[자작문제] 약간은 발상적인 수2킬러
게시글 주소: https://orbi.kr/00072695811
평가원 시험지 기준으로 보면 킬러급인 수2자작입니다
팔로우해주시면 뻘글 없이 맛있는 문항들을 만나보실 수 있습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제 명의로 된 통장에는 3억정도 있고 나중에 약국하게되면 부모님이 추가로 1~2억...
-
이제 안함 오늘은 못해
-
개념서에서 이 공식이 왜 나온거지 원리를 알아야된다고들 하시던데 지수법칙이나 각변환...
-
걍 사랑한다
-
피곤할때 1시간 자고 공부하는것보다 졸음참고 하면서 공부하는게 더 뿌듯하게 느껴짐...
-
지금 대선후보 7
이재명 이준석 말고 또 잇나요
-
92세 김말숙 초반까지 보고 껐다
-
오늘 팝스 결과 6
제멀: 180->220 유연성:18->24 악력:46->50 드디어 사람됐네
-
이제 대통령감인 사람?은 누구 있나요?
-
오르비 은따 4
= 나
-
안녕하세요 인사드립니다 비록 현재는 재수생 신분이지만, 영어만큼은 전교 1등,...
-
지금은 ㄱㅊ나)
-
예쁘긴 하지만 그만큼 많이 힘들듯 방구석에 누워서 오르비에 똥글이나 벅벅 싸는 내가...
-
올해 수특 3
과목 불문하고 풀어보신분들 어떠셨나요?
-
나름 중도보수라고 생각하고 윤석열 탄핵 인용->잘된 일 이재명 대통령 당선->원치는...
-
정치는 항상 극과 극의 말을 다 들어야됨. 한때 극좌쪽이던 부모님이 우파쪽으로...
-
저메추 좀 마라탕X, 피자X, 치킨X, 면 종류X(별로 배가 안 참)
-
ㄱㅊ다 이건
-
민주국가의 국민 각자는 서로를 공동체의 대등한 동료로 존중하고 자신의 의견이 옳다고...
-
진짜 이런 과외쌤 없는듯 너무 최고임요 돈 따로 받지도 않는데 추가로 수업해주심...
감소함수
x=-2 교, x=1 접
도함수 판별식 <= 0 으로 최고차항 범위 확정
정답내기
너무잘해..
41?
41
f(x)가 증가함수이면 f(f(x))는 증가함수고 f(-x)는 감소함수가 되어 집합 조건에 모순
그러므로 f(x)는 감소함수다.
그러므로 {x|f(x)>=-x} = {x|x<=-2 or x=1} 이 되어
f(x)+x=-a(x+2)(x-1)^2 (a>0) 으로 놓을 수 있다.
x를 우변으로 넘기고 양변을 미분하면
f'(x)=-3a(x-1)(x+1)-1
도함수의 부호변화가 없어야 하므로 x=0에서의 최댓값이 0 이하여야 한다.
따라서 3a-1<=0 a<=1/3
f(-5)=108a+5
그러므로 최댓값은 108/3 + 5 = 41