기적의 논리
게시글 주소: https://orbi.kr/00072695100
R(x) : exists in reality
E(x) : exists
1. ∀x (¬R(x) → E(x))
The negation of 1 is
2. ∃x (¬R(x) ∧ ¬E(x))
2 is a contradiction ("∃x" vs "¬E(x)")
Therefore, 1 is true
Conclusion
∀x (¬R(x) → E(x))
---------------------------------------------------------------------
M(x) : exists in the mind
1. ∀x (¬R(x) → M(x))
The contrapositive of 1 is
2. ∀x (¬M(x) → R(x))
2 is false, therefore 1 is false
The negation of 1 is true
The negation of 1 is
3. ∃x (¬R(x) ∧ ¬M(x))
Conclusion
∃x (¬R(x) ∧ ¬M(x))
------------------------------------------------------------------
1. ∀x (E(x))
The negation of 1 is
2. ∃x (¬E(x))
2 is a contradiction ("∃x" vs "¬E(x)")
Therefore, 1 is true
Conclusion
∀x (E(x))
∀x (E(x)) and ¬∃x (¬E(x)) are equivalent.
The meaning of ¬∃x (¬E(x)) is "Something that does not exist does not exist".
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고