미적분 풀이 어디가 틀렸는지 모르겠어요
게시글 주소: https://orbi.kr/00072684636
답지가 이해는 되는데 제 풀이가 왜 틀린지 모르겠음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
맞팔구 0
-
Keegan-Michael Key
-
근육통이 생김
-
연세대가 노최저라서 할까하다가 연세대 논술 공부(수리+최저도 공부해야하니)의...
-
달마 오열하겠노 0
단박에 깨달음 ㅇㄷ
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 3
논리싫증주의자는 관심이 없다
-
못생긴듯 0
-
이번만큼은 사랑한다 섹스 ㅋㅋㅋㅋ
-
왜 맞팔했는데 0
1명이 줄어든거지??ㅡㅡ
-
공주 가오떨어져
-
그냥 싫음 화학 자체가 역겨움
-
안녕하세요 0
네
-
독감인가 1
토요일부터 계속 이러네 열이 내렸다가도 다시 남
-
타과생들 어떻게 생각하시나요
-
아 여기가 아닌가?ㅎ
-
참고로 본인 여잔데 진짜 잘생긴 애보기 어려움
-
사문 윤성훈 한지 이기상 듣고있는데요 아직 개념도 못 끝냈고 마더텅 문제 양도...
-
몸에만 잘맞으면 암기량 적고 문풀하는 재미가 상당함(진짜 중요) 각 사상가의 논리적...
-
남자보고 귀엽다고 느낀 적은 있는데
-
부탁드림!!
-
내 주위 사람들은 잘만 씻던데 전자기기도 각종 청소용품으로 막 청소하는거 보고 엄청 신기했는뎁
-
지금 고3이고 3모때 미적 66 3등급 맞았는데 수학 어떻게 공부해야할 지...
-
어그로 죄송합니다 그냥 적어봤습니다.
-
이게 왜 여러 삽화의 병렬적 구조인지 잘 이해가 안됨뇨 직렬적 구조 아닌가요?
-
여름이었다. 0
아니 왜 벌써
-
올해 우승해야지?
-
어릴때 학교다닐때 앞에서 시범 보여주면 보고 따라하는거 있잖아요? 색종이 접기,...
-
공교육 질 개선할려면 교육수준에 따라 분반 해야함 19
막말로 1등급반에서 교사가 평가원 문제 기출 분석하고 인강 분석해서 가르치면 됨...
-
ㅈㄱㄴ
-
뭔가 6모 잘봐야된다라는 생각으로 페이스 조절 못할 것 같은데 아 근데 또 현장감...
-
국어는 높9인데 수학은 낮9임 탐구는 그냥 중간? 가능할까요
-
크아아아ㅏㄱ 연인들 사진 좀 그만 찍어라ㅏㅏㅏ!!!
-
언확쌍윤 13211 이화여대 교육 최초합 가능권인가요?추합권인가요?
-
1년공부하고282930다틀리는상상해서엉엉울엇어
-
나임
-
노래추천 0
life force 뽕차오릉다
-
복습할 때 어떻게해야됨? 그냥 지문 쓱 보면서 스키마 떠올리면 됨?
-
으하하
-
안경써야지 1
난 안경이 맞아 음음 렌삽은 너무 비쌌다
-
맞팔9 5
맞팔9
-
와개막막해
-
수특 1
문학하고 탐구면 충분함?
-
각각 20181121,20171130,20181130+로 내면 컷이 어디까지...
-
ㅁㅊ듯이할게믾음 0
근데머릿속은며칠째몽롱함무한으로할게쌓임
-
일차함수랑 직선의 방정식은 유사하다고 알고있는데Y=2/4+1 에서 y축방향으로...
-
어 형이야 1
반갑다
-
인강 현강 들을 거 다 들은 애들 아님?? 아닐 시 ㅈㅅ
-
일단 난 미적러임
대충봤는데 t^2=(2/t + 3)^2 에서 문제 생긴듯여
산술기하 최소가 되려면 둘이 같을 때 아닌가요..?
그건 x+1/x 요런꼴일때만 성립해용
산술기하평균쓸때는 곱이 상수가 나와야 합니다.
왜냐면 상수가 아니라 t로 최소가 표현되게 되면
그냥 그 t에서 부등식 성립하는거라
아 감사합니다 이해됐어요 그럼 혹시 복잡해지겠지만 그 부등식의 해를 구하면 답은 정상적으로 나오나여?
산술기하로 최소 찾는 메커니즘이
1. t에 대한 식에 산술기하를 씀 (t는 임의의 실수)
2. 부등호에 상수가 등장함 (곱이 상수, 혹은 합이 상수)
3. 그 상수를 만족시킬때 (=조건)가 존재함
4. 그럼 t의 대한 식은 명백히 그 지점을 지나며,
5. 그 지점은 부등호에 의해서 최소( 최대) 일 수 밖에 없음
이런 논리인데
상수가 안나올때 그냥 부등식 양변 풀고
= 조건 쓰게 되면
그냥 해보시면 알겠지만 아무 의미가 없습니다
왜 의미가 없는가
상수일때는 f(t)>=C (C는 상수)
혹은 C>=f(t) 였는데
상수가 아닐때는
f(t)>=루트g(t)
이런 느낌인거에요
그=조건이 성립할때 만난다 정도만 의미있는거죠
만약 상수가 아닐때 산술기하평균으로
최소를 찾고싶으시면
순서가 중요합니다
1. 원래 식 >=루트g(t)
이런식으로 나올텐데
루트g(t)의 최솟값을 찾기
2. 최솟값을 갖는 t에서 =조건이 성립함을 보이기
이러면
원래식>=루트g(t)>=루트g(t)의 최솟값
이때 루트g(t)가 최솟값을 가질때 f(t)=루트g(t)이므로 f의 최솟값도 찾을 수 있는거죠
산술기하는 그냥 항상 성립하는 부등식이지 최대/최소를 보장하는 부등식이 아님
보장되려면 한 쪽이 상수여야함
감사합니다 혹시 위에 질문도 알려주실 수 있나요