수학황님들 제발 도와주십시오
게시글 주소: https://orbi.kr/00072631923
1. 전제가 거짓이면 결론이 거짓이다
이명제는 반례가 있어서 거짓임
1의 반례는
(나는 컵이다, 컵은 동물이다) 라는 전제가 거짓이어도
(나는 동물이다) 는 참인결론임
따라서 1의 부정이 참
p->q의 부정은 p and not q
따라서 1의 부정은
2. 전제가 거짓 and 결론이 참
p and q 가 참이면 p->q도 참
따라서
3. 전제가 거짓이면 결론이 참
결론
전제가 거짓이면 결론이 참
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사탐 기출분석 2
강사의 기출 커리를 타면 따로 마더텅이나 자이 풀 필요 없음??
-
ㅈㄱㄴ
-
하루에 19시간은 걍 구라같은데 랭킹보니까
-
맞맞맞팔팔팔구구구
-
삼반수 가자! 1
실패하더라도 한번더봐야 미련이 안남을듯
-
아는 선생님이 없다
-
나는 내가 게이라는 사실을 죽어도 못말할것 같음
-
잠깐 안들어오고 앱도 삭제했는데 드라마틱하게 공부시간이 느는건 없었음 생각해보니까...
-
절대 오르비 접속이 뜸해진 참에 도망가려는데 아님 ㅇㅇ 절대 오르비보다...
-
ㅍㅅㅌ 일반고 내신 2.3인데 모고는 지금까지 한번빼고 올 1이고 이번 3모 국수영...
-
일단 난 개념베스트 강좌는 발췌독으로 들음 그리고 CSAT 완강, DEEP 강의...
-
이번3모 화작80(화작 2틀) 미적1컷 영어3 탐구 1 3인데 탐구 3등급인건 아직...
-
졸업생인데 주소지 타지역에서 볼 수 있나요?
-
아예 전범위맞나요??
-
시대컨 질문 1
엑셀 공통 ㄱㅊ음?
-
아마 없긴 할 것 같은데 찾으시면 ㄱㅅ.
-
n제 추천 0
3모 공통1, 확통1틀인데 n제 볼텍스, 드릴, 4규, 펀더멘탈 n제 중에뭐가 좋을까요?
-
그날부터 운동시작할게
-
잇올은 무조건 올라인 신청만 되는거예요? 직접가서 신청 못함?
-
는 옛날에 올린거 Max{3x, 2y}=5 Mid{3x, 2y}=3 Min{x,...
-
삶이판타지
-
뭐가 제 아이덴티티를 대표한다 생각하시나요?
-
뉴런언제해요 3
지금 수분감 반정도 했는데 뉴런이랑 병행해도 될까요 아니면 걍 수분감 1회독다하고...
-
올해 차영진 N제게임 어타 저만 좀 쉬운 거 같나요 0
공통은 무난했고 미적은 적분빼곤 괜찮았음 문제퀄은 근본적이면서도 낯설어서 다 좋은듯...
-
쉬울수도?
-
닉 추천받음 4
앙망
-
그냥 쉬지않고 쳐먹는거같은데
-
오르비 정도야 뭐
-
외대만 까이는게 아니라 경희대도 이젠 뭐 동국,홍익대한테도 쳐발리는데 중건시동...
-
3모 때 미적 27번부터 4개 틀렸고 뒤에 2 3단원은 더 자신이 없어서 확통할까...
-
질문받음 7
없으면 자러감
-
이번 3모 수학이 작수보다 어렵다는 평이 많은데 이번3모가 실제 수능이었다면 등급컷 어느정도일까?
-
진짜 대체 왜 존재하는지 모르겠다
-
예전에 풀었을 때 한번 낚였었는데 또 낚임.. 아 백옥루 보면서 깨달은거구나 ..
-
군침이 피젯스피노 24
-
4덮까지 쉴까 8
비호감 게이지도 줄겠지 그러면 성적도 올리고오면 더 좋고
-
눈팅만 하다 글써봅니다 잘부탁드려요!
-
뭐지 수1은 이해원 시즌2로..? 샤인미 풀고 풀려 했는데
-
쌍사 0
쌍사 작년 기준으로 3등급이면 탐구 그냥 다른 거로 옮길까요..?ㅠㅠ
-
컨셉질 끝 4
좋은 밤 보내세용
-
김승리 커리탔는데 문학은 ㅈㄴ좋은데 비문학은 현장에서 못써먹겠음 메가대성 둘다있는데 ㅊㅊ좀
-
방송 보고싶다 1
돌아와 푸바오
-
11모 성적유출 사태 이후로 아예 5월에 내나 보네 한번만 그럴줄 알았는디
-
나는 사람들 못속이겠네..
-
휴릅 쉽지 않다 9
사는데 재미를 느낄만한게 너무 없다 요즘은
-
흠...
-
작수 39고 사문은 작수 때 지나치게 꿀이어서 낌새 이상해서 배제할 거임
-
깝치지마 12
자러갈거니까
화면 속 논증은 다음과 같은 이유로 참이 아닙니다.
논증의 오류:
* 전제 1의 반례: 제시된 반례는 전제가 거짓일 때 결론이 참일 수 있음을 보여줍니다. 하지만 이는 전제가 거짓이면 결론이 항상 거짓이라는 명제를 반박하지 않습니다.
* 부정의 오류: p -> q의 부정은 p and not q가 맞습니다. 그러나 이를 통해 "전제가 거짓 and 결론이 참"이라는 명제가 참이라는 결론을 도출하는 것은 논리적 비약입니다.
* 결론의 오류: "전제가 거짓이면 결론이 참"이라는 결론은 전제 1의 부정과 같습니다. 이는 전제 1이 거짓임을 증명할 뿐, 해당 결론이 항상 참임을 의미하지 않습니다.
올바른 논리:
* 전제 1의 의미: 전제 1은 조건 명제(p -> q)입니다. 조건 명제가 거짓이 되는 경우는 전제가 참이고 결론이 거짓인 경우뿐입니다.
* 전제 1의 부정: 전제 1의 부정은 "전제가 참이고 결론이 거짓"입니다.
* 결론의 오류: "전제가 거짓이면 결론이 참"이라는 명제는 조건 명제가 아닙니다. 따라서 전제 1의 부정과 직접적인 관련이 없습니다.
결론적으로, 화면 속 논증은 논리적 오류를 포함하고 있으며, 제시된 결론은 참이 아닙니다.
반례가 있는데 왜 반박하지 않는다는거죠?
(나는 컵이다, 컵은 식물이다)라는 전제가 거짓이어도
(나는 식물이다)는 거짓인 결론임
1.전제가 거짓이면 결론이 거짓이다
1번명제가 거짓임을 반례를 들었잖음
3.전제가 거짓이면 결론이 참이다
3번 명제가 거짓임을 반례를 들었잖음
흠.. 사실 "나는 식물이다"가 참인게 아닐까요? 억지긴 한데.. 1번의 반례가 있으니 1번이 거짓이고 1번의 부정이 참이다 라는게 틀린논리는 아니지않나요?
그런 식의 억지면 토론 자체가 무의미함.
그렇게 치면 '나는 동물이다'도 거짓임
"1번의 반례가 있기때문에 1번이 거짓, 따라서 1번의 부정형이 참"
이게 억지인가요?
님이 직접 억지라고 해놓고 '이게 억지인가요?' 하고 물으면 어쩌자는 거임?
ㅈㅅ.. 다시 한번만 고려해주셈
"1번의 반례가 있기때문에 1번이 거짓, 따라서 1번의 부정형이 참"
이게 억지인가요?
참 or 거짓 이라는 이분법적인 현대논리학으로는 절대진리에 다다를 수 없음
원래 세상사가 참이라고 할 수도, 거짓이라 할 수도 없는, 옳고 그름을 논할 수 없는 거임
아니 샹 3천덕 안 주시면 삐져서 바로 신고 조질 거임..
오천덕드림
와 ㅅㅂ 바로 공중제비 조집니다 감사합니다 행님