241122, 251122, 251130 기억하자
게시글 주소: https://orbi.kr/00072627808
제가 문제를 제작하면서 해이해질 때마다,
위의 3문제를 머릿속에 떠올립니다.
뭐 당연한 얘기겠지만, 장사꾼의 입장에서는 고객을 무조건 기분 좋게 하는게 유리합니다.
하지만 평가원은 장사꾼이 아니죠. 누구한테 좋은 평가를 듣는 것이 목표도 아니고요.
워낙 요새는 콘텐츠가 많이 나오다보니,
여러 콘텐츠 중 어느 것을 선택하면 좋을지 고민할 수 있고,
이 기준은 대다수의 경우에, 본인의 기분을 좋게 하는지 아닌 지가 되어가는 듯 합니다.
최근 실험적이고 어려운 N제보다는 무난하고 쉬운 N제가 선호되는 경향도 이에 무관하지는 않은 듯 합니다.
하지만 꼭 명심하셔야 합니다.
모든 시험은 전례가 없기에 어려운 것입니다.
남들보다 앞서 가려면, 지금까지 없었던 미지의 무언가에 대비하셔야 합니다.
그런 면에서, 앞에서 언급한 3문제는 제게 큰 교훈을 줬습니다.
241122는, 킬러문항 배제 원칙을 천명한 해의 수능 문제입니다.
역대 어느 공통 문항도 저 문항을 난이도 면에서 뛰어넘지 못합니다.(개인차가 있을 수도 있습니다.)
역대 최고난도의 수2 문항이 킬러 배제하겠다는 해에 출제되었습니다.
만약 저 문항이 사설 콘텐츠에 출제되었다면, 너무 난이도가 높아서 욕먹었을 것이 분명합니다.
물론 무작정 어려운 것이 좋다는 의미는 아닙니다...
문제의 정교함도 제게 큰 교훈이 되기도 했지만,
기출에서 크게 벗어나지 않은 무난한 콘텐츠를 자제하자는 교훈이 더 컸던 것 같네요.
251122는, 풀면서 기분이 분명 좋지 않았을 겁니다.
하지만 이런 문제도 수능에 나옵니다.
실수 하나로 점수 차이를 내겠다, 꼼꼼함도 덕목이다...
이런 부분도 충분히 대비하셔야 하고, 저도 그에 따라 문제를 제작하고 있습니다.
251130은 발문이며 내용이며
솔직히 이전 평가원 미적분 문항들과 괴리가 있는 편이죠.
특히 sinx=x의 해가 0뿐임을 사용하는 것이 새로우면서도..
초월함수와 다항함수의 방정식이라서 저는 신기해했습니다.
살짝 e^x+x-1=0의 해가 0인 것을 바로 쓴 느낌?
참고로 초월함수와 다항함수의 방정식이 평가원에 안 나온 것은 아닙니다.
20230929인데, 다만 여기서는 그래프를 줌으로써 e^x+x-1=0의 해가 0임을 주었습니다.
종종 학생들이 '이런 것은 평가원에 나오지 않아!' 라고 합니다.
하지만 평가원의 속은 아무도 모릅니다.
변별을 위해서는 새로움이 필요하며, 새로움은 곧 전례가 없음을 의미합니다.
항상 이를 염두해두며, 저도 새롭고 교육적인 문제를 제작하려 하는 것 같습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅂㅂ 3
-
탈릅선언은 2
걍 하지말자 만화에서도 감동적인 이별후 다시 오면 그만큼 짜치고 뻘쭘한게없음
-
고구마님이 국어만드신 그런거처럼..
-
평소에도 댓글 잘 안 달리는데 없겠지 뭐....
-
GG
-
즉, 내가 싫어하는 오르비언은 오르비언이 아님
-
재밌어지는 법 2
중딩때는 머릿속이 드립으로 넘쳤어요 고등학교 올라오면서 적어지더니 자퇴하고 수능보고...
-
시대컨 질문좀요 2
이번 3모 적백인데 트러스 엑셀 둘다 사야함? 트러스는 쉽다는 말 있던데 잘 모르겠네용
-
인강 듣거나 빡집중으로 실모보는거 제외하면 무조건 들음
-
수학도 잘하지 인성 좋지
-
나 좋아하는 사람 26
모여라
-
기회 1번
-
수학풀때는 진짜 못참는데 그리고 공부안될때 음악틀고 사탐 수특 벅벅 풀면 그만한 힐링이 없음
-
수학 기출 0
스블 회독하면 따로 기출문제집 사서 안풀어도 되나여
-
요즘껀 어렵나 아직 18 19 20 기출임
-
ㄱㄱ
-
근데 난 슈퍼스타도 아닌데 왜
-
날 좋아하는 사람들을 내가 좋아하는거징
-
순수하게 분탕을 치기위해 오르비를 들어오는 ms들
-
첨알았당
-
ㅇㅇ
-
엑셀 살까 2
작년 강k 어렵게(?) 구했는데
-
박석준쌤 어떰? 2
3모 해설강의 보니까 문학 풀이방식이 조금 독특한 것 같아서.. 국어 문학을 너무...
-
조용히 들렸다가 가세요
-
공부도 못해 잠도 못 자에휴 씨 발
-
업로드되는 칼럼들은 유튜브 영상으로도 제공되니, 많은 관심과 구독 부탁드립니다!...
-
로스쿨 가야하니까 배려라고 생각하려고 해도 공대는 학점 필요없나? 걍 다 필요한건데...
-
은 뭔가요
-
지금 피램 2일치 유기함...... 아.... 죄송합니다 열심히 살지 않아서.......
-
탈릅한다고 하고 재릅하는자와 밑도 끝도 없이 도덕적이고 착한 페르소나를 연기하는...
-
로스쿨예과느낌 아닌가 실제로 리트 엄청 많이 보지 않음?
-
프사바꿈 5
-
사탐런때문에 공대 못써서 자유전공-전전 테크 타려고 했는데 막상 와보니까 과생활에서...
-
단순히 내가 공부를 못하는데 의대를 노린다던가 하는 것을 떠나서 내가 밑천이 없는데...
-
이거 전국 모든 잇올 다 합친 석차인 건가요 이게 맞다면 더프 본 잇올러만 전국에...
-
난 n제 추천해줄때 16
무조건 설맞이 1순위로 추천해주는데 물론 저거 풀만한 등급대면 ㅇㅇ
-
1. 실수 줄이는 법(부제 : 사람은 항상 같은 실수를 반복한다) 2....
-
아이디어 수강후 기생집 중인데 실전개념이 좀 부족한거같아서 뉴런 들으려고 함 근데...
-
플래너쓰고 좀 거시적인 계획은 잡아야겠어
-
현역 고3인데, 학교에서 엄기은 쌤 수업 듣는 사람이 저밖에 없는 게 너무 아쉬워서...
-
걍 바꾸지 말까
-
음음
-
갑자기 언어능력 포텐터져서 문학 100% 수렴에 독서도 10분 남기고 2틀 정도가 되는거임
-
수일만 대충 어떤내용인지 궁금합니다
-
대통령, 국회의원, 광역 자치 단체장, 광역 의회 비례 대표 의원, 교육감에 대한...
-
푸 리 나
-
금방 마감되나요? 9시에 방문접수 10명 받던데 9시에 가면 줄 쫙 서있으려나 강남권은아님
-
올해도 가면 이새끼 뭐지 싶겠지.... 근처 학원가야하나
-
아 과제하기싫다 4
교양 필수 채우겠다고 아무거나 잡지 마십쇼...
개추부터
찡찡대지 않고 문제 거르지 않을게요 대학에서 걸러지니까요
251122는 꼭 기억해야겠어요 ㅠ
스크랩까지
종종 학생들이 '이런 것은 평가원에 나오지 않아!' 라고 합니다.
하지만 평가원의 속은 아무도 모릅니다.
이건 진짜 팩트추입니다
강사들조차 함부로 예단할 수 없는 영역
당연 사설 출제진들 평가원이 각잡고 만들면 절대 못이김
ㅇㄱㄹㅇ 팩트임
하지만 참신한 시도를 하면 수능조차도 평가원스럽지 않다고 까이는게 현실..
하지만 수능 틀리고 수능 욕해봤자 달라지는거 없는데 ㅋㅋ
평가원이 평가원스럽지 않다는 글들을 보고,
어느 의미인지도 이해하고 아예 공감 못하는 것은 아니지만,
평가원스럽지 않다의 결론으로 본인이 싫어하는 문제를 거르는 행위를 하는 학생분들이 뭔가.. ㅠ
개인적으로 23년 4월에 시행된 더프 22번같이 오류있는 문제 아니면 거르면 안 된다고 생각함

감사합니다공감이 가네요

센세 반갑습니다저는 251130에서 가형 기출 중에 xlnx=1의 근이 하나인거 이용하는 그 문제가 떠올랐어요
201130(가)네요
저도 그 생각 하긴 했습니다 ㅎㅎ
수학뿐 아니라 전 과목에 적용되는.. 수학은 특히 더 큰거 같네요
진짜 입맛에 맞는 문제만 풀려고 했던 제 자신을 반성하게 되네요....저같은 분들은 다들 한번씩 이 글을 보셨으면 좋겠습니다 정말 잘 썼네요
231122 241122가 제가 느낀 공통 난이도 투 탑
문제거르는놈들특) 수능조지고 평가원이 사설틱했다고함
아속의비아도 아니고
사설틱한 평가원이라니
멋지네요
뜨끔...
수학은 개정이후로 사설퀄리티가 다 상향평준화 되어서 거를만한게 딱히 없는듯..
171130 181130 141129 171129 기억하자
251130 사각형 그림 어디가써요
혹시 미적 n제도 출시 예정이신가요??