241122, 251122, 251130 기억하자
게시글 주소: https://orbi.kr/00072627808
제가 문제를 제작하면서 해이해질 때마다,
위의 3문제를 머릿속에 떠올립니다.
뭐 당연한 얘기겠지만, 장사꾼의 입장에서는 고객을 무조건 기분 좋게 하는게 유리합니다.
하지만 평가원은 장사꾼이 아니죠. 누구한테 좋은 평가를 듣는 것이 목표도 아니고요.
워낙 요새는 콘텐츠가 많이 나오다보니,
여러 콘텐츠 중 어느 것을 선택하면 좋을지 고민할 수 있고,
이 기준은 대다수의 경우에, 본인의 기분을 좋게 하는지 아닌 지가 되어가는 듯 합니다.
최근 실험적이고 어려운 N제보다는 무난하고 쉬운 N제가 선호되는 경향도 이에 무관하지는 않은 듯 합니다.
하지만 꼭 명심하셔야 합니다.
모든 시험은 전례가 없기에 어려운 것입니다.
남들보다 앞서 가려면, 지금까지 없었던 미지의 무언가에 대비하셔야 합니다.
그런 면에서, 앞에서 언급한 3문제는 제게 큰 교훈을 줬습니다.
241122는, 킬러문항 배제 원칙을 천명한 해의 수능 문제입니다.
역대 어느 공통 문항도 저 문항을 난이도 면에서 뛰어넘지 못합니다.(개인차가 있을 수도 있습니다.)
역대 최고난도의 수2 문항이 킬러 배제하겠다는 해에 출제되었습니다.
만약 저 문항이 사설 콘텐츠에 출제되었다면, 너무 난이도가 높아서 욕먹었을 것이 분명합니다.
물론 무작정 어려운 것이 좋다는 의미는 아닙니다...
문제의 정교함도 제게 큰 교훈이 되기도 했지만,
기출에서 크게 벗어나지 않은 무난한 콘텐츠를 자제하자는 교훈이 더 컸던 것 같네요.
251122는, 풀면서 기분이 분명 좋지 않았을 겁니다.
하지만 이런 문제도 수능에 나옵니다.
실수 하나로 점수 차이를 내겠다, 꼼꼼함도 덕목이다...
이런 부분도 충분히 대비하셔야 하고, 저도 그에 따라 문제를 제작하고 있습니다.
251130은 발문이며 내용이며
솔직히 이전 평가원 미적분 문항들과 괴리가 있는 편이죠.
특히 sinx=x의 해가 0뿐임을 사용하는 것이 새로우면서도..
초월함수와 다항함수의 방정식이라서 저는 신기해했습니다.
살짝 e^x+x-1=0의 해가 0인 것을 바로 쓴 느낌?
참고로 초월함수와 다항함수의 방정식이 평가원에 안 나온 것은 아닙니다.
20230929인데, 다만 여기서는 그래프를 줌으로써 e^x+x-1=0의 해가 0임을 주었습니다.
종종 학생들이 '이런 것은 평가원에 나오지 않아!' 라고 합니다.
하지만 평가원의 속은 아무도 모릅니다.
변별을 위해서는 새로움이 필요하며, 새로움은 곧 전례가 없음을 의미합니다.
항상 이를 염두해두며, 저도 새롭고 교육적인 문제를 제작하려 하는 것 같습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
6모 모교 접수 0
하러 갓는데 교무실에 쌤들이 안계셔서 다른 쌤핟테 전달해 달라고 햇는데 이래도...
-
6모 신청 모교에서 할건데 걍 홈피에 있는 전번으로 전화하면 되나? 1
6모 신청 관련해서 전화 드렸는데요... 로 시작하면 되나..? 사진이랑 신분증만...
-
여자친구 생김 7
.
-
재앙이식 언론플레이와 간보기: 시간이 오래걸림, 지루함, 논쟁가능성 100퍼 윤통식...
-
시발점 1회독은 끝내고 2회독을 하려고 하는데요 노베라서 잘 모르겠는데 인강까지 한...
-
문법만 1년동안 판다 일본어 일루와잇 ㅋㅋ
-
중3~고1 수학 공부하고 수1 수2 들어가는게 맞겠죠? 0
아니면 그냥 수1 수2 하면서 수꼭필 병행해도 문제 없나요?
-
품절되기 전에 사야하는데.. 작년엔 언제 품절이었지?
-
작 6모 92 9모 96 수능 88 3모 88 이정도면 그냥 인강 안듣고 독학으로...
-
경국대전ㅋㅋ
-
김승리 병행 5
지금 올오카 4주차인데 tim 시작해서 병행하면 에반가용? 올오카는 강의 일요일에...
-
day1부터 암기하기 시작했습니다. 파생어,유의어 합쳐서 120개 정도..?에...
-
삼수기록 4일차 0
국어 독서기출 2020수능 레트로바이러스 리트 2010 22-24 김상훈 문학론...
-
뭔가 오류가 있는 것 같은데 어디인지 모르겠어요..
-
경국대.... 2
무슨 드라마에 나올 법한 대학 이름이네 차라리 국립안동대라 바꾸지... 안동대...
-
아
-
국어 나기출 언매 1단원 홀수번호만 김상훈 문학론- 독해의 대원칙(1)~(2)...
-
니가 사람이냐..
-
인강에서 알려주는 글을 읽는 태도 << 이건 정말 도움이 많이 됐습니다 그러나 특히...
-
다 꾸안꾸 느낌의 자랑글 같은데 냐가 열등감 덩얼리인건가
-
3등급인데 단어장+기파급+기출 하려고 합니다
-
사탐사탐인데 맨 아래 항목으로 신청해도 괜찮을까요? 전화해서 물어볼까요 아님 그냥...
-
중경외시 전전 다니는데 1달 다닌 후 그냥 뭔가 학교나 과도 불만족스럽긴해서...
-
안녕하세요, 혐오의 시대입니다. 먼저 지금까지 제가 오르비에서 올린 글들로 인해...
-
피가 부족한가봄.. 주말에 된다고 하니 예약까지 잡아주시네 ㅋㅋㅋ
-
‘의사 국시 실기시험 부정행위’ 의대생 448명 검찰 송치 11
의사 국가시험 실기시험에서 부정행위를 저지르다 적발된 의과대학 학생들이 검찰에...
-
스토리 올라올 때 마다 죽고 싶네
-
덕코 기부좀요~~
-
의사가 다 워라밸 없이 돈 많이버는 줄 아는데 그렇지도 않음 공기업만큼 일하는...
-
날씨가 좋네오 2
네오네오
-
ㅎㅇㅎㅇ 오늘 4/2인데 거짓말하는 글 왤케 많음 거짓이 난무하는 이 곳에서 진실...
-
프사 잘만든듯 3
-
내 인생 마지막 대통령 탄핵심판 방청하러가고 싶다
-
풀매수 드간다 십마넌으로
-
[이데일리 김민정 기자] 윤석열 대통령 탄핵심판 선고가 오는 4일로 확정된 가운데...
-
레서 어플 0
한동안 하지 않았더니 점수가 떨어졌네요 심심할때마다 이용하여 점수 올려봐야겠습니다
-
귀여워요 6
수박이 아야
-
마치 수학 1등급의 벽 같구만 아무리 수학을 공부했어도 1등급은 나오지않고 항상 2등급이었지..
-
노베 기준 닥 수학 아님?
-
예상 해보세요
-
동갑인 애들 대부분 본3/본4/졸업 이거 3개 중 하나임
-
문제 해설 연관기출(190630 (나))
-
팔로우수 그대로..
-
x스장 도착 4
힘좀써보자구
-
깔끔하게 손절
-
수2 자작 해설 4
문제 해설 연관기출(22예시12) 해설을 항상 쓰는 건 아니지만 종종 올리려고 합니다.
-
회독하시나요 아니면 한번풀고 마시나요???
-
투표 ㄱㄱㄱ
개추부터
찡찡대지 않고 문제 거르지 않을게요 대학에서 걸러지니까요
251122는 꼭 기억해야겠어요 ㅠ
스크랩까지
종종 학생들이 '이런 것은 평가원에 나오지 않아!' 라고 합니다.
하지만 평가원의 속은 아무도 모릅니다.
이건 진짜 팩트추입니다
강사들조차 함부로 예단할 수 없는 영역
당연 사설 출제진들 평가원이 각잡고 만들면 절대 못이김
ㅇㄱㄹㅇ 팩트임
하지만 참신한 시도를 하면 수능조차도 평가원스럽지 않다고 까이는게 현실..
하지만 수능 틀리고 수능 욕해봤자 달라지는거 없는데 ㅋㅋ
평가원이 평가원스럽지 않다는 글들을 보고,
어느 의미인지도 이해하고 아예 공감 못하는 것은 아니지만,
평가원스럽지 않다의 결론으로 본인이 싫어하는 문제를 거르는 행위를 하는 학생분들이 뭔가.. ㅠ
개인적으로 23년 4월에 시행된 더프 22번같이 오류있는 문제 아니면 거르면 안 된다고 생각함

감사합니다공감이 가네요

센세 반갑습니다저는 251130에서 가형 기출 중에 xlnx=1의 근이 하나인거 이용하는 그 문제가 떠올랐어요
201130(가)네요
저도 그 생각 하긴 했습니다 ㅎㅎ
수학뿐 아니라 전 과목에 적용되는.. 수학은 특히 더 큰거 같네요
진짜 입맛에 맞는 문제만 풀려고 했던 제 자신을 반성하게 되네요....저같은 분들은 다들 한번씩 이 글을 보셨으면 좋겠습니다 정말 잘 썼네요
231122 241122가 제가 느낀 공통 난이도 투 탑
문제거르는놈들특) 수능조지고 평가원이 사설틱했다고함
아속의비아도 아니고
사설틱한 평가원이라니
멋지네요
뜨끔...
수학은 개정이후로 사설퀄리티가 다 상향평준화 되어서 거를만한게 딱히 없는듯..
171130 181130 141129 171129 기억하자
251130 사각형 그림 어디가써요
혹시 미적 n제도 출시 예정이신가요??