3모 수학 14번 설문 부탁드립니다 :)
게시글 주소: https://orbi.kr/00072608259
여기서 정적분 식을 변형하여 꼴을 만들고,
접선의 방정식을 유도해서 풀었는데요,
제 주위에서는 의견이 갈리더라고요.
저는 조금 발상적이라고 (2번) 생각하는데요,
오르비언 분들은 어떻게 생각하시나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
집안에 고양이가 엄청 많았는데 무슨 고양이 요양원처럼 대부분이 아픈 고양이었음.....
-
베이스 소리가 날 자극해
-
아니면 그냥 정석적인 풀이 써져있나요??
-
군수 밸런스게임 3
04년생 지금 대학교 1학년이고 26,27수능만 본다는 가정하에 1. 25.8월...
-
피램 좋나요? 6
ㅈㄱㄴ
-
아....
-
이게 그냥 게임이었다면 GG치고 나갔을듯
-
현역 수학 0
현역 고3입니다. 작수 92(28, 30틀)이고, 평소에 수능이나 모의고사 보면...
-
잠을 깨긴 깨야하는데 이거 어카지 ㅅㅂ
-
sol 1. (나), (다) 조건에서부터 함수 f(x)의 증감 파악이 중요함을 알...
-
또 졋어요?? 12
보니까 또 가르나초 당신입니까..
-
얼버기 0
ㅍㅣ곤하고 뉸 아파
-
출근도장 11
쾅쾅쾅
-
진짜모름……
-
ㅎㅇ 2
-
생지 -> 생명사문 할 것 같은데 w관 가겠죠?? 그리고 관 바뀌어도 반은 똑같나요??
-
센츄달고싶당 0
6모는29꼭맞혀서센츄달아야징…… 3모수학고1범위라고유기한거지금생각해보니까너무아까움……
-
작년에 생지했는데 지구가 6모 5 9모 1 수능 4떴고 올해 3모 3떴는데 빨리 런하는게 답이겠죠?
-
문과 시절에 한지 사문 응시했었고 15수능 50 50 / 22수능 50 48...
-
사실안좋음.
-
곧 도태될 듯
-
26㐃능 ➙보늖 Lㅓ! 당장 ✇오✻➙☉르ㅂ1 엹품ㅌㅏ✯ㅇㅔ 오ㅏㄹㅏ✃...
-
달라진당!!!
-
오늘아침 성과 ㅁㅌㅊ 15
시험 며칠 안남았다...
-
자 지축을 박차고 자 표효하라 그대
-
어르버르기 4
버르어르기
-
얼버기 20
씻고 등장
-
위장이 뒤틀리는 느낌 작년까지만 해도 몸이 튼튼했었는데 나도 나이를 먹었나봐
-
일반고 내신 1학년 내신 3.6 고2입니다. 생기부는 평범한 일반고 생기부로, 분량...
-
대학 붙었는데도 학교 안 가고 그냥 아무것도 안 하니까 인생이 망가져가고 있는 거...
-
인증메타였어? 5
그런건 일찍일찍 시작해야지
-
고졸이나 전문대졸에 대해서 엄청 안좋게봄 이 사이트가 나는 그냥 별 생각 없름
-
도망쳐
-
얼버기 0
부지런행
-
낄낄낄 4
1교시 ㅋㅋㅋ
-
먼저 잡아먹힌다
-
넵
-
공부 해야하니깐 이제 옷에 돈 안 씀ㅇㅇ(엄카제외)
-
벌써 수요일이라니.
-
오늘도 무휴반 0
가보자고
-
배송 완료 돼있댔는데 문 앞에 없음 주소 잘 찍었음 이럼 어떡함??
-
얼버기 0
민나 오하요
-
얼버기 0
아흑 개졸려 ㅜㅜ
-
다른 과목이랑 달리 모든 사람들이 어느 정도 다 잘하니까 1등급으로 가는게 너무 빡셈
-
윫하 0
-
심화엔제중에서요
-
쌓인 화가 많으니 사소한 일들에도 열이 뻗치지 에혀..
-
이젠 괜찮은데 0
사랑따윈 저버렸는데
별 차이 없는거같긴 해요
1번이랑 2번 말씀하시는 건가요?
이게 발상이면
점심메뉴는 어캐 고르는겨
점심메뉴 고르기는 극악의 발상적인 문제 아닌가요?
그럼 그걸 어캐풀어요?
접선의방정식 안쓰는 풀이가 있는지 저도 고민 중이에요
지금으로썬 접선의방정식 안쓰는 풀이는 못 찾았습니다
접방이 아니라 미분계수로 처리해도 되나 흠
양변 t-a로 나누는 거 말씀이신가요?
적분 꼴이라 t-a로 나눌 수 없습니다 ㅠㅠ
부등식 한쪽으로 모는게 발상적이라고 생각하진 않는 입장이긴 해요
그부분이 의견이 많이 갈리더라고요
저는 풀때 양변 식변형을 생각 못하고 그냥 있은 그대로 해석해서 풀었는데 해설보니까 접선의 방정식형태로 푸는게 더 쉬워보이더라고요.. 처음풀때 이걸 발견 못해서 그냥 좌변은 f(x)-f(a)=g(x)라는 x=a에서 함수값이 0인 4차 방정식과 우변은 기울기가 f'(a)이고 x=a에서 함수값이 0인 1차식을 비교해서 x=a에서 함수값이 0으로 같고 기울기도 같은거 이용해서 어찌 저찌 풀어서 맞추긴했는데 처음풀때 식변형 생각못하고 좀 더 어렵게 풀어서 시간 좀 날린거 반성중입니다...
저도 한번 시도해봤는데 많이 꼬이더라고요 ㅠㅠ
다음에 더 잘보시면 됩니다!
저는 그냥 한쪽으로 다몰고 접방과 f의 차함수로 바라보고 부정적분함수가 증가함수다라고 풀었음요
한쪽으로 다 몰면 접방인게 안보일수가 없음
저는 처음에 문제 봤을 때, 부등식 좌변 f(a)만 우변으로 이항했거든요.
그 다음 f(x)와 접선의방정식으로 나눠서 생각했습니다.
아예 한쪽으로 다 몰아버리면 접선의방정식이라는 생각이 떠오르기가 쉽겠네요.
좋은 의견 감사합니다 :)