[수학자료] 3모 공통 손풀이+총평
게시글 주소: https://orbi.kr/00072607181
2025년 고3 3월 학력평가 풀이
생각보다 쉽지 않았던 문제였습니다
S_n에서 n이 몇이냐에 따라 일반항이 달라지기에
그 점을 활용해서 모순이 일어나는 부분들을 제외하고
착실히 따라가서 n을 찾으면 되는 문제였습니다
0과 -2a의 대소관계만 찾아서 풀어주면 되는 문제였습니다
10번대에서는 가장 쉽게 나온것 같습니다
늘상 나오는 정적분 문제입니다
A의 좌표를 찾고, 주어진 부분 넓이를 어떻게 계산할지 고민하고, 삼각형을 활용하면 되겠다만 발견하면 쉽게 풀립니다
삼각함수문제입니다
sin함수가 a값의 부호에 따라 모양이 달라지기에
이 점을 활용해 a값의 부호에 따라 케이스 분류만하면
간단하게 풀렸습니다
부정적분 문제입니다
박스안의 조건해석이 관건이었던 문제로
먼저 식을 정리해서 접선과의 관계식으로 만들고
이후 그래프의 개형을 추론하면 되는 문제였지만
보통 이런식의 문제는 특수한 상황이 답이되는 경우가 많고
아마 문제를 많이 풀어본 n수생들은 보자마자 그래프 개형이 나왔을 수 있었을 거라 생각합니다
개인적인 의견으로는 이런식의 그래프 개형추론은
평가원에서 자제하는 중이기에
그리 좋은 문제는 아니었다고 생각합니다
그럼에도 접선과의 관계식으로 생각+항상 적분한 값이 양수라는 조건의 의미 파악은 중요했습니다
15번은 실수 전체집합에서 실수 전체집합으로 일대일 대응이라는 다소 특이한 발문이 있던 문제였습니다
정의역과 치역이 실수 전체이기에 p가 0이 될 수 밖에 없다는 부분에서 시작하여 이후 q와 a를 특정하면 됐습니다
로그함수의 점근선에 대해 주의깊게 생각해보며 문제를 풀었다면 아마 보다 쉽게 풀릴수 있었을거 같습니다
단순하게 계산만 하면 되는 문제였습니다
미지수가 2개이고 코사인 법칙을 통해 식을 2개 세울수 있다는 것을 바로 판단하여서 바로 풀수 있어야했습니다
아마 공통중에서는 가장 난이도가 높았던 문항입니다
a_5값을 뽑아내고 나서 이후 a_4의 범위를 확인했습니다
이후 간략한 케이스 분류로 답을 낼 수 있었습니다
중요했던 포인트는 a_1만 자연수이고 나머지의 자연수 여부는 모른다는 부분이었습니다
그렇기에 a_1의 값이 범위형태로 나와서 특이하게 풀리는 문제였습니다
22번은 생각보다 어렵지는 않았던 문제였습니다
0과 2에서 미분이 가능하다는 부분에서 시작하여
처음 0에서 f(x)의 절댓값을 케이스를 나누어 벗겨냈어야 했습니다. 이후 2에서 미분가능해지게 만들기 위해서는
우미분계수와 좌미분계수가 같아져야 한다는 것을 이용하면
수월하게 답이 나왔습니다
전체적으로 작년수능기조를 따랐던 시험이라는 생각이듭니다. 수1 수열에서 가장 난이도 높은 문제가 출제되고
공통 객관식을 쉽게 출제하는등 작년 수능기조를 따라갈려는 노력이 보였습니다. 하지만 그와 동시에 선택 미적은
꽤나 높은 난도로 출제해서 수험생들 입장에서 쉽지 않았을거라는 생각도 듭니다
첨부 파일로 글에서 설명한 문제를 포함한 22번까지의 전 문항에 대한 손풀이를 올려두었으니 학습에 도움이 되었으면 합니다
3월 모의고사를 못봤다고 너무 좌절하지 마시고
잘봤다고 너무 자만하지 마시고
틀렸던 부분, 부족한 부분 인지하여 수능때까지 다들 열심히 하시길 기원합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이라고하면 난 닥 손승연임... 수1 권현석 수2 손승연 미적 김범준듣는데 1,2월...
-
– 절망편 보고 좌절한 너를 위해 쓰는 글 – “명문대 나와도 백수다!” “요즘은...
-
화상과외가 역시 짱 11
머리 안감아도 모르잖음 그게 최고임
-
기하런 방향성 0
07 현역이고 미적 28 29 30 다틀렸어요. 학교에서 배운 개념으로 3모 기하...
-
에 대한 대처 또한 달라지겠지 어떤 식으로 변별을 할 지는 그때 가봐야 알겠지만 꽤...
-
주말 낮이랑 금욜 5~7시 이 때 시간이 너무 뜨는데 시급 3 이하로 해서 지1...
-
맞팔하실 분 4
잡담 태그 잘 다니까 댓글 주세용
-
무영창은 시전자의 목숨을 앗아갈 수 있으므로 주의해야함
-
얘두라 5
일요일이니까 공부하지말고 쉬어
-
강X 모고가 아직 안팔아서 2026 이해원 N제 사려는데 작년이랑 많이 겹치면 딴거사게요
-
2025학년도 경인교대 면접 기출(선행학습평가) : 네이버 블로그
-
아침 공부 쉽지 않네 10
흠
-
아싸 홍삼 8
에브리바디 홍삼
-
3번째 얼버기 4
다시 잠들기 싫어
-
41점 3등급임 세지지구할지 세지한지 할지 고민입니다 두과목 새로 시작하는게 부담도...
-
– 간판값 못 하는 애들 7종 모음.zip – 요즘도 학벌 빨고 있는 애들 많더라....
-
we are in the rocket ship
-
얼버기 0
-
20, 21, 29, 30 빼고 30분만에 다 풀었는데 20번에 20분, 21번에...
-
한국사를 아예 모름 사실상 재수생이라 3모가 저 점수면 한국사만 문제가 아닐텐데...
-
국 90 수 85 영 84 물50 지50 내신은 지역자사고5점대라 버림..
-
심찬우 선생님 생글 완강하고 에필로그도 다 풀었습니다 심찬우 선생님은 독서 지문...
-
ㅈㄱㄴ
-
기다려 오뿌이들
-
f(x) 최고차항이 작다면 이런 상황도 가능하지 않나요? 접한다는 건 한점에서만...
-
다시 봐도 수긍이 가는 이건희 회장의 30년 전 발언 2
30년 전 발언이 지금까지 통할 줄은 몰랐네요.
-
현강생인데 현강 중간고사 휴강기간 이후에 결제하는건가요? 결제하라는 문자가 안와서요
-
공신력 ㅆㅅㅌㅊ인 곳에서 가져옴
-
고2고 내신 화학 부교재가 수능특강이라 cnr특강 듣고 지금 수특 풀고 있는데...
-
사주에서 이번에 대학 못가고 재수하면 연대갈수있다고 하는데 뭐라 말해줘야할까
-
수학 마킹이슈로 81점된건 양해부탁
-
예전에 벤 빠돌이일적에 '우리 벤누나가 삼십대가 되면 어떻하지 ...' ㅇㅈㄹ...
-
2025학년도 한국외대 논술 기출(선행학습평가) : 네이버 블로그
-
P and not P가 참이면, 사진의 5번에서 P or not P 가 참이됨따라서...
-
그대 생각이 많이 나네요이런 생각하면 바보 같지만저기 먼 곳에서 그대 다시 올 것만 같아
-
시대인재나 대성학원 다니나요?
-
물리 선택자분들 3
오늘부로 여러분의 발판 한명이 사탐으로 떠나게 되었습니다. 안녕히계세요
-
브레이크 고장난 경운기에 태워서 담벼락에 들이받는 꿈을 꾸었늠
-
일단 저는 고2고 영어 모의고사 만년 3등급인데요 어떻게 3등급을 탈출할지...
-
레버기 0
부지런행
-
잔다리 2
-
ㅎㅇㄹ 8
안농
-
3모 93점 정시파이터 학교평균>=전국평균정도 하는 학교 시험범위 안보고...
-
복습 영상 어디서 볼 수 있어?? 제발 ㅠㅠ 급함
-
[르포] 일상 복귀, 마음 바쁘지만 아직…"잿더미만 봐도 눈물" 0
"영감이 광부 일하며 모은 돈으로 지은 집, 한순간에 사라져" 출향인, 임시생활...
-
어젯밤에 무슨일이
-
와.. 나도 이해할수 있을정도임..
-
일요일은 늦잠 자니 머리가 맑아지는것같음 학원가서 자습해야지ㅎ
Great

캬 부엉이님 손글씨는 언제 봐도 멋지네요22번 f(0)>0 f'(0)=0이고 0<x<2에서 |f|가 미분가능해서 x=2에서 케이스 나눌 필요가 없이 그냥 f로 나옴
감사합니다

감사합니다15번에서 왜 p가 0이 되어야하나요?
실수 전체집합에서 실수전체집합으로 일대일대응되기 때문에 음의 무한대를 치역으로 가지는 a+log2x를 기준으로 생각하면
p가 0보다 클경우 음의 무한대를 치역으로 가지지 않고 p가 0보다 작을경우 함수가 정의되지 않는 구간이 나타나게 되요(log2x의 정의역은 x>0이기 때문에)
아 치역에 이미 실수전체집합이 있디고 전제했기때문에 그 조건을 충족시키기 위해 p가 0이여야 하는거군요!
일대일대응이라는 것에만 집중해서 치역이 실수전체라는 중요한 조건을 못봤네요
답변감사합니당