3모 수학 71m 100점 손풀이 + 코멘트
게시글 주소: https://orbi.kr/00072600536
풀이 후 편집과정을 일절 거치지 않았습니다. 풀이가 이해되지 않거나, 오류가 있다면 댓글 남겨주시면 감사하겠습니다.
9번
삼차함수의 2:1 비율관계를 생각해볼때, a=3임을 바로 알 수 있습니다.
t=6에서의 위치 + 2 x (0~2까지 이차함수 넓이공식)으로 계산 마무리 했습니다.
10번
3단위로 1씩 늘어나는거 보고 빠르게 선지에 나와있는 n값 대입해줬습니다.
엄밀한 해설로서의 가치는 없지만, 시험장에서는 어떤 방식으로든 빠르고 정확하게 푸는게 목적이라는 것을 명심합시다.
11번
x=0에서 극솟값을 가지는 케이스를 암산으로 날려줬습니다.
x=-2a에서 극솟값을 가짐이 확정되었으니 계산마무리.
12번
삼차함수의 점대칭성을 이용하여 편하게 끝내보려 했으나 실패하여 일단 넘겼던 문제입니다.
다 풀고 돌아와서 무지성 계산 벅벅하니 1분 이내로 끝나더군요.
여기서 시간 좀 날렸어요
13번
0~파이까지의 그래프가 확정되었으니 a값에 따른 -파이~0까지의 그래프를 떠올리며 빠르게 풀어줍시다.
14번
박스 조건을 보고 'x=a에서의 접선이 항상 f(x)보다 작거나 같다'라는 동치조건을 뽑아내는게 관건이었던 문제입니다.
x=-1, 3에서의 접선이 일치함을 파악해주면, 그래프 그릴 필요도 없습니다.
문자2개 조건2개 남았으니 끝났잖아요? 계산 밀어줍시다. (최종 계산 식에서 나온 ax+b의 a는 문제에서 제시한 a와 다른 a입니다. 급하게 푸느라 체크를 못했네요)
+사실 x=1이 -1과 3의 평균값임을 인지하면 이런 풀이도 가능해집니다.
x=1에서의 접선을 바로 뽑아낼 수 있고, 거리곱을 이용해서 x=-1,3에서의 접선도 바로 뽑아낼 수 있죠. 마지막 계산 또한 거리곱으로 바로 처리가 가능합니다.
15번
'실수 전체의 집합에서 실수 전체의 집합으로의 일대일대응' 조건하나로 모든 상황이 확정되는 문제입니다.
15번에도 위와 같이 아주 쉬운 문제가 출제될 수 있으니 문제 번호만 보고 쫄지맙시다.
20번
어떻게 풀어도 미지수2개, 식2개이니 반드시 풀리긴 하는 문제입니다만..
식을 어떻게 쓰냐에 따라 계산량이 많이 차이날 수 있어요.
항상 계산량 예상하면서 계산 들어가는 습관을 가집시다.
21번
점화식 나와있고 a6나와있으니 역추적 쭉 해주면 a1이 나올거라 생각하고 역추적을 시작했을겁니다.
그런데 어라? a5가 10이라서 더 이상 역추적이 불가능하네요?
당황하지 말고 역추적 가능한 케이스만 끝까지 진행해주고, 나머지 케이스는 a1에서부터 정방향으로 추론해나가면 쉽게 풀립니다! 이때, a1이 자연수이지 모든 항이 자연수가 아니라는 것을 주의해야해요!!
+ 전 위와같은 수열추론문제에서 모든 케이스를 빠뜨리지 않기 위해 위와 같이 표의 형태로 나타내요.
22번
수2 22번치고 굉장히 가벼운 문제였다고 생각해요.
구간별로 제시된 함수가 미분가능하니 당연히 각 구간에서 미분가능하고, 연결지점에서 미분가능해야겠죠?
이를 그대로 적용시켜주면 조건4개가 나오므로 미지수가 4개인 3차함수는 반드시 확정나겠죠?
계산 밀어줍시다.
27번
sin함수의 주기가 2an이고, 한 주기당 1개의 실근이 생기는데, 실근의 개수가 2n이라고 했으므로 0<x<3에 대략 2n주기가 들어있다고 생각할 수 있겠죠? 따라서 2n x an = 3 정도로 근사때렸습니다.
28번
수열의 극한에서 늘 나오던 유형이죠. x범위따라 함수 나눠주고 그려줍시다.
여기서 박스조건이 핵심이에요. 모든 실수 x에 대하여 극한식이 '존재'한다고 했습니다.
x=-1일때를 생각해봅시다. 분모가 2+(-1)^n이 되는데, 이 극한이 존재하기 위해서는 분자가 분모가 완전히 같은 상황, 즉 f(-1)=0인 상황이 유일합니다. (분자가 0이 되어도 되는데, 위 문제에서는 분자에도 (-1)^n이 있으니 제외했습니다.)
이제 f(x)의 세 근이 확정되었으니 극댓값을 위아래로 조정해보면 정답상황을 쉽게 알 수 있습니다.
29번
출제자가 앙심을 품고 낸 문제라고 생각합니다. 여기서 10분이상 털린 것 같아요 ㅋㅋㅋㅋ
그냥 넘어갑시다.
30번
박스 밑 조건으로 인해 -1<r<1임을 알 수 있고, (나)조건을 잘 생각해보면 r>0임을 알 수 있습니다.
즉, r은 1보다 작은 양의 유리수입니다.
(나)조건을 잘 생각해보면 당연히 9,6,4 또는 9,3,1 또는 4,2,1 조합밖에 없지 않겠어요?
그런데 박스 밑 극한 식의 결과값에 3의 배수가 포함되어 있으니 4,2,1조합은 아니겠네요. 남은 두 경우 중 계산을 통해 9,6,4조합이 정답상황임을 쉽게 확정지을 수 있습니다.
0 XDK (+60,500)
-
60,000
-
500
-
이제 진짜 자야할듯 11
오르비도 줄여야할듯 이건 진짜 아니야
-
선착순1명 이미지써드림 10
.
-
집 언제가지 0
6시간동안 달리는중
-
2시네 11
자야지
-
선착순 2명 13
나한테 100덕
-
정시로 부경대 왔는데 ㄹㅇ 구라 안치고 3모 쳐봤더니 점수 이거 뭐냐 원래 3모...
-
뭐여
-
레이디보이들 보고 싶음
-
이미지 써드림 13
선착 1명
-
연고대 아래론 당연히 스카인데 명문대 아니냐 메디컬,서울대는 (특히 서울대는)...
-
돌이 되고싶다 0
doll 아님..
-
안녕하세요 이번에 현역으로 수능을 응시하려고 하는 고3 학생입니다. 다름이 아니고...
-
담밍아 7
나랑 놀자
-
요 며칠간 중독된사람마냥 몇개를 푼건지 모르겠네 이제 좀 끊어야지 이번엔 과탐 실모 양치기 간다
-
ㅇㅈ 했다가 9
댓글에 ??? 쓰이는거 보고 이제 안 함 무슨 의미의 ???였을까
-
안녕 15
너무 오랜만이당!
-
새벽편의점 3
갈말
-
안자는 오르비언들 25
출석하세요
-
소설 악당은 살고싶다 읽는데 아랫도리 축축하게 적었다 0
100화-200화 진짜 개쩌네 글을 어케 저케쓰지
-
오늘은 화학은 왜 어려운가? 그렇다면 이를 해결할 방법은 무엇인가?를 주제로 한번...
-
다 잘 때 됐잖아? 자 드가자
-
문득 말이야.. 5
기억했던거보다 더 정들었나봄 진짜로 다 거짓말이었냐.. 씁..
-
언제가 좋아요 11
심심한달리기선수 사평우어피니티셀레스티얼지로함 연구원My love찬란한 빛 미마정
-
누가 결사반대해서 안 가고 누움
-
2초삭함
-
60년대 시절 국어 교과서에선 필수적 부사어가 보어였습니다 2
문교부에서 교과서를 만들던 시절
-
현역이고 이번 3모 13111인데(언미정법사문) 미적분하고있는데 이거 계속 해도...
-
난 여고딩 같이 생김 10
라고 하면 총 맞겠지
-
금방이라도땅이꺼질듯해
-
왜냐면 베라 4000원 할인 쿠폰 한 달에 한 개씩 생기거든 뭐로 먹을까?
-
이렇게 금연하게 되는건가
-
그냥 옆에 동기 반강제로 오르비 가입시키고 만나면 그게 옯만추지 ㅋㅋ
-
수지게이 같은 친구들은 함축적 의미를 해석 못하는거 같은데 국어 몇등급일까 비문학은...
-
난 고대 좋아함 7
그 흰수염 해적단같은 특유의 분위기 좋아함 그래서 의대 중에서는 한림이 호감임
-
버근가
-
내일 먹을 거 2
아침 - 삼각 김밥 1,200원 점심 - 우동 6,000원 저녁 - steak...
-
오르비언이 나 살렸음 12
진짜 숨참고 뒤질뻔했다가 살아났네
-
그는 나에게 일말의 관심조차 주지 않는다.
-
샴푸가 다 떨어져서 비누로 머리감음... 넘 찝찝한데 편의점에서 샴푸 사서 다시 감을까요?
-
저 여르비 아님 3
놀랐죠 ㅋ
-
내가 국어로 사기치는 사람들을 경멸하는 이유기도 함 6
수학은 못하면서 사기치는게 내 상식으로는 불가능해보이고 일단 나는 내 실력에...
볼때마다 글씨가 참 예뻐요
글씨 합격
아 내멘트 뺏겼다...
생각없이보다가 스포당할뻔 으하하
71분이 가능한건가..

14번 ㅁㅊㄷ 너무 깔끔해오수학의 정상화...고트...

와...이렇게까지 풀이를 사고로 단축해야 시간이 그렇게 남는구나..ㄷㄷ진짜 대단하다...
71분은 대체 뭐임
캬
10번은 해설로서 가치가 없는 게 아니라, 오히려 실전 풀이에서 가장 효과적인 방법이라고 생각이 드네요
14번 해설이 약간 아쉬움
f'(1)=1 보고 바로 대칭축 떠올려서 (x+1)²(x-3)²+x+k 이렇게 들어갔어도 됐을텐데
그리고 이미 문제에 a가 있는데 미지수로 또 a 쓰면 나중에 헷갈림 지금 이 문제야 호흡이 짧아서 안 헷갈렸겠지만..
맞아요 저도 계속 그 생각하고있었어요
아직 실력이 부족해서 첫 풀이에서는 못 떠올렸네요 ㅜㅜ
30번 (나)조건 봐도 양수라곤 단정짓기 어려워보이는데 설명 자세히 가능할까요? ㅜㅜ
r이 음수면 1~9까지의 자연수 중에 3개가 나올 수 없을 겁니다 r을 최소 4번은 곱해야 되거든요
그러네요 감사합니다
멋있다..
수학 과외 좀 해줄래?

선생님..?아 더프는 시간 이겼는데 3모는 77분걸려서 졋누
29번도 sin값 나오고 길이비를 이용하면 CDE 세변 길이가 다 구해지는 쉬운 문제인데요
20번에서 4루트2는 어디서 나온건가요??
AB길이 말씀하시는거라면
b=2를 확정지은 후 코사인 법칙 적용시켜주었습니다.
와 진짜 수학goat시네
님 볼때마다 겸손해지네요 감사합니다