수학 붕괴 시키는데 성공함
게시글 주소: https://orbi.kr/00072599327
귀류법
1. (A가 거짓->모순)->(A가 증명있음)
1의 대우명제 2.
2. (A가 증명없음)->(A가 거짓 and 무모순)
무모순<->참
3. (A가 증명없음)->(A가 거짓)
3의대우명제 4
4. (A가 참)->(A가 증명있음)
--------------------------------------------------------------------------------
5. A가 공리->A가 증명없음
3과 5를 연결한 6
6. A가 공리->A가 거짓
6의 대우명제 7
7. A가 참->A가 공리아님
--------------------------------------------------------------------------------
8. A가 공리->A가 참
4와 8이 연결된 9
9. A가 공리->A가 증명있음
9의 대우명제 10
10. A가 증명없음->A가 공리아님
--------------------------------------------------------------------------------
난 9가 틀렸다고 봄
그리고 8도 틀림
왜냐하면 4와 8이 연결된게 9인데, 4는 귀류법이 옳다면 참일수 밖에 없다고 생각함
따라서 9와 8의 부정형이 참임
9의 부정형 11
11. A가 공리 and A가 증명없음
8의 부정형 12
12. A가 공리 and A가 거짓
12가 참이라는건
(A가 공리)<->(A가 거짓) 이라는 말임
공리면 거짓이고, 거짓이면 공리다
즉, 공리와 거짓이 동치라는 말
공리는 수학의 기반.
그 기반이 거짓이라는것..
그것은 [수학의 붕괴]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2시네 11
자야지
-
선착순 2명 13
나한테 100덕
-
정시로 부경대 왔는데 ㄹㅇ 구라 안치고 3모 쳐봤더니 점수 이거 뭐냐 원래 3모...
-
뭐여
-
레이디보이들 보고 싶음
-
이미지 써드림 13
선착 1명
-
연고대 아래론 당연히 스카인데 명문대 아니냐 메디컬,서울대는 (특히 서울대는)...
-
돌이 되고싶다 0
doll 아님..
-
안녕하세요 이번에 현역으로 수능을 응시하려고 하는 고3 학생입니다. 다름이 아니고...
-
담밍아 7
나랑 놀자
-
요 며칠간 중독된사람마냥 몇개를 푼건지 모르겠네 이제 좀 끊어야지 이번엔 과탐 실모 양치기 간다
-
ㅇㅈ 했다가 9
댓글에 ??? 쓰이는거 보고 이제 안 함 무슨 의미의 ???였을까
-
안녕 15
너무 오랜만이당!
-
새벽편의점 3
갈말
-
안자는 오르비언들 26
출석하세요
-
오늘은 화학은 왜 어려운가? 그렇다면 이를 해결할 방법은 무엇인가?를 주제로 한번...
-
다 잘 때 됐잖아? 자 드가자
-
문득 말이야.. 5
기억했던거보다 더 정들었나봄 진짜로 다 거짓말이었냐.. 씁..
-
언제가 좋아요 12
심심한달리기선수 사평우어피니티셀레스티얼지로함 연구원My love찬란한 빛 미마정
-
누가 결사반대해서 안 가고 누움
-
2초삭함
-
60년대 시절 국어 교과서에선 필수적 부사어가 보어였습니다 2
문교부에서 교과서를 만들던 시절
-
현역이고 이번 3모 13111인데(언미정법사문) 미적분하고있는데 이거 계속 해도...
-
난 여고딩 같이 생김 10
라고 하면 총 맞겠지
-
금방이라도땅이꺼질듯해
-
왜냐면 베라 4000원 할인 쿠폰 한 달에 한 개씩 생기거든 뭐로 먹을까?
-
이렇게 금연하게 되는건가
-
그냥 옆에 동기 반강제로 오르비 가입시키고 만나면 그게 옯만추지 ㅋㅋ
-
수지게이 같은 친구들은 함축적 의미를 해석 못하는거 같은데 국어 몇등급일까 비문학은...
-
난 고대 좋아함 7
그 흰수염 해적단같은 특유의 분위기 좋아함 그래서 의대 중에서는 한림이 호감임
-
버근가
-
내일 먹을 거 2
아침 - 삼각 김밥 1,200원 점심 - 우동 6,000원 저녁 - steak...
-
오르비언이 나 살렸음 12
진짜 숨참고 뒤질뻔했다가 살아났네
-
그는 나에게 일말의 관심조차 주지 않는다.
-
샴푸가 다 떨어져서 비누로 머리감음... 넘 찝찝한데 편의점에서 샴푸 사서 다시 감을까요?
-
저 여르비 아님 3
놀랐죠 ㅋ
-
내가 국어로 사기치는 사람들을 경멸하는 이유기도 함 6
수학은 못하면서 사기치는게 내 상식으로는 불가능해보이고 일단 나는 내 실력에...
-
옯창의 무게를 견뎌라
-
오르비 랭킹 3위 먹고 그랬는데 개학하니까 잘 안되네요
-
병원 가야하나요? 커피 아침에 한잔 마신게 다인데 왜이러지 엄청 피곤한대 누워서...
공리는 증명 없이 참이라고 믿기로 한거에요. 공리를 기반으로 다른 모든 증명들이 이루어지는거라서 공리에 대한 증명을 논할 수 없음. 모든 증명은 그 기저에 있는 논리를 통해 이루어지는데 공리는 그 증명을 위해 참조할 기저 논리가 없음, 공리가 모든것의 기저 논리니까. 그래서 공리에 대해선 증명을 논할수 없음
(A가 공리)->(A가 증명없음)->(A가 거짓)
따라서 (A가 공리)->(A가 거짓)
공리엔 증명 없으면 거짓이라는게 안통함. 공리는 예외적으로 증명없어도 참이라고 하자 라고 한거라서 애초에 통하지가 않는거임
그건 그냥 수학자들이 합의본거고 실제로는 다를수있지않음?
수학은 애초에 수학자들이 합의한 체계 위에서 진행되는거임. 그 약속된 체계가 현실을 잘 설명할 뿐인거임
난 "공리는 참" 이라는게 증명 또는 반증될수 있다고 믿음.
증명이 없는데 왜 참임? 참일 이유가 없는거잖음
2.
명사 철학 수학이나 논리학 따위에서 증명이 없이 자명한 진리로 인정되며, 다른 명제를 증명하는 데 전제가 되는 원리
자명한 원리로 인정된다는 대목 자체가 수학자들이 합의봤다는 뜻임. 수학은 애초에 자연을 다루는 학문이 아니라 논리학임. 사람들이 만든 논리체계 위에서 작동하는 학문임. 공리는 애초에 그 정의 자체가 증명이 필요 없는, 증명을 할수도 없는 원리라서 0!이 예외적으로 1인것처럼, 공리는 예외적으로 증명을 논할수가 없는거임
참일 이유(증명)이 없는데 왜 참이라고함?
그걸 증명할 기저논리가 없으니까. 공리가 모든것의 기저논리니까. 수학은 공리가 참인지 아닌지를 증명하는게 아니라 현재 수학의 공리들이 참인 체계 위에서 다른걸 증명한다고 생각하면 됨. 그게 맘에 안들면 더 쓰기 편한 다른 공리들을 정의해서 그것에 기반한 수학체계를 발전시키고 수학자들한테 인정받아도 됨. 다만 어떤 체계에서도 공리는 증명을 못함. 그게 공리의 정의임. 이거에 대해선 더 할 수 있는 말이 없음. 공리는 그냥 사람들이 그렇게 정한것일 뿐임. 증명하고 말고 할게 없음. 진짜 그걸로 끝임.
님은 만약 공리의 특징인 "증명없음" 과 "참" 둘중에 하나 포기하라면 뭐 포기할거임?
애초에 포기할수가 없음. 둘중 하나라도 없는 순간 공리는 공리가 아니게 됨. 증명이 없지 않다면 그 공리라고 부르는 논리 밑에 또다른 논리가 있는거니까 공리가 아님. 참이 아니게 되면 그건 그거대로 공리의 정의에 어긋나서 공리가 아님
난 본문내용에 공리가 적용되지 않는다는게 매우 꼬움
어쩔 수 없음. 무언가의 참 거짓을 판단한다는건 그것의 아래에 있는 논리를 참조함. 그 논리의 판단은 그 아래의, 그것의 판단은 또 그 아래의 논리를 참조하는 형태고, 사람의 말과 논리학은 무한하지 않아서 그렇게 파고 파고 파다보면 끝에 도달할 수 밖에 없음. 그 끝이 공리인거임. 애초에 논리학이나 수학은 자연에 원래 있던 요소를 탐구하는 학문이 아니고, 사람이 만든 요소를 탐구하는 학문이라서 그 기본 환경설정을 하고 그 위에 여러 학문적 성과들을 쌓아올리는거임. 공리는 그 환경설정임.
본문 결론은 "(A가 공리)<->(A가 증명없음)<->(A가 거짓)"
인데 공허참도 거짓 전건만 있으면 명제가 참이잖음
그거처럼 전건이 공리고 거짓이라는...
A가 공리와 A가 증명없음이 동치가 아님. A가 공리면 A의 증명은 없는데 그 역은 성립하지 않음. 그리고 그 논리학 체계도 공리 위에 세워진 거라서 증명 없다와 거짓도 동치가 아님. 반례가 공리임
님이 애초에 본문의 전개를 틀렸다고 보니까요..
논리체계에 기반한거면 애초에 공리의 진위여부를 따지는게 불가능하니까
공리의 진위여부를 따지는 근거는 결국 따지고 들어가면 공리인데 그러면 공리가 공리의 진위여부를 따지는 순환논법이 됨. 이런 상황 때문에 공리의 진위여부를 판별할 수 없는거고, 공리의 진위여부를 판별하려는 순간 순환논법의 오류에 빠지게됨
저는 귀류법이 참이라고 치고 전개한거임
다른공리로 공리가 참, 공리가 증명없음 에 대해 증명또는 반증 할수있을거같은데 아닌가요
만약 다른공리를 찾아 증명한다 그래도 그 공리의 증명은 다른 공리를, 그 다른 공리의 증명은 또 다른 공리를... 찾아가다보면 결국 공리는 무한히 존재하지 않으니 어느순간 순환논법에 빠짐
그리고 미안하지만 처음 귀류법으로 증명하고 싶은 명제를 정확히 써줄수있음? 1번부터 그 명제의 결론을 부정한거임?
1번이 참이라고 치고 이어나가서 결국 "(A가 공리)<->(A가 증명없음)<->(A가 거짓)"를 도출했다고 생각함