수학 붕괴 시키는데 성공함
게시글 주소: https://orbi.kr/00072599327
귀류법
1. (A가 거짓->모순)->(A가 증명있음)
1의 대우명제 2.
2. (A가 증명없음)->(A가 거짓 and 무모순)
무모순<->참
3. (A가 증명없음)->(A가 거짓)
3의대우명제 4
4. (A가 참)->(A가 증명있음)
--------------------------------------------------------------------------------
5. A가 공리->A가 증명없음
3과 5를 연결한 6
6. A가 공리->A가 거짓
6의 대우명제 7
7. A가 참->A가 공리아님
--------------------------------------------------------------------------------
8. A가 공리->A가 참
4와 8이 연결된 9
9. A가 공리->A가 증명있음
9의 대우명제 10
10. A가 증명없음->A가 공리아님
--------------------------------------------------------------------------------
난 9가 틀렸다고 봄
그리고 8도 틀림
왜냐하면 4와 8이 연결된게 9인데, 4는 귀류법이 옳다면 참일수 밖에 없다고 생각함
따라서 9와 8의 부정형이 참임
9의 부정형 11
11. A가 공리 and A가 증명없음
8의 부정형 12
12. A가 공리 and A가 거짓
12가 참이라는건
(A가 공리)<->(A가 거짓) 이라는 말임
공리면 거짓이고, 거짓이면 공리다
즉, 공리와 거짓이 동치라는 말
공리는 수학의 기반.
그 기반이 거짓이라는것..
그것은 [수학의 붕괴]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시험 유기할거임 2
반수하면 그만이야~~~~
-
미적분 n제 0
수분감 step1 끜나고 step2랑 병행할만한 n제 추천 부탁드려요
-
ㄹ.ㅇ.티비
-
언매 77 독서 6틀 문학4틀 미적 77 (오늘 시간관리 전혀 안됨) 점수 개떡락함...
-
수학을 다른과목 다 끝내고하니까 수학에서 펑크나서 그런가 내일부터 사탐을 저녁에 해봐야겠음
-
풀고 풀이 올리면 과정 맞는지랑 답 알려드림 전부 통과 수준이기는 한데 자료해석...
-
오르비에 여르비 있음??? 본인이 이쁘다고 생각하는 10
위에 옷(흰티 인디코트러커 화이트팬츠 첼시부츠고) 밑에착용샷 남자랑 처음보는데...
-
앱스키마를 할까 이매진을 할까 간쓸개를 할까 매월승리를 할까 6
비독원 끝난 후에 비독원 복습하면서 리트300제 풀건데 리트300제 끝나면 뭐하죠...
-
아니 문제가 진짜 좀 문제가 있는데 내가 화작 오늘 처음 시작해서 그런가..
-
한테 일부러 투키라고 불러서 빡치게 만드는걸 즐기는 질나쁜 취미를 가진 적이 있었습니다
-
반팔 입던데 진짜 그 거-대한 팔뚝에 묻히고 싶다 .. 하
-
진짜 충격이네 6
Tuki.나이가 만으로 하면 나보다 1살어림ㄷㄷ 나는 이 나이 되도록 대체 뭐를...
-
2025학년도 단국대 논술, 면접 기출(선행학습평가) 0
2025학년도 단국대 논술, 면접 기출(선행학.. : 네이버블로그
-
이제 다 대학교4학년임 시발
-
나도 대학가고싶은데 시발
-
백두~마운틴 0
https://youtu.be/jZX2HY8zQXI
-
벌점받은뒤로 일부러 이상한글 안쓰고 사렸는데 바로 심사거절하는거뭐임
-
천칼로리 태움 쌉가능! 울 오리비들도 천칼로리 버닝 가즈앗~
-
컴퓨터로 볼 땐 괜찮던데 ㅠ
-
검토진 목록에 내 이름 있어서 먼가 저자 된거 같은 느낌이 들어서 기분이 좋음...
-
부도칸은 ㅅㅂㅋㅋㅋㅋ
-
모두 오늘도 수고했어요 오르비 잘자요
-
분철하면 가루가 우수수 떨어진다길래 고민이네여
-
닉넴 바꿨써여 2
원래닉으로 바꿈
-
45번이랑 정답률 똑같이 낮던데 난 40번이 좀 이해가 안감.. 45번은 보자마자...
-
김동욱 선생님 6
수국김, 반응스위치온 듣고나서 뭐 들어야 하나요…?!
-
파워가 다르다네
-
내년이면 17세 무도관 입성이니까 올해 토게토게 리나(보컬)이 17세로 최연소일테니...
-
쓰잘데기 없는 커뮤 줄여쓰니 조아쓰
-
[칼럼] 미적분을 곁들여 231122 연역적으로 풀어보기 9
*본 칼럼은 물개물개님의 칼럼대회에 제출되었습니다. 본 글에는 합성함수 미분에 대한...
-
황밸이긴함
-
대학생이라 더프같은 사설 현장에서 보고싶은데 진짜 5월 사설은 다 후반기에 있네 하.
-
술먹고싶다 7
에탄올이 필요하다 낄낄
-
1단원 -> 문학이 주로 무슨 내용을 다루는가 3단원 -> 1단원에서 다룬 내용을...
-
ㅇㅇ
-
정답은 김치찜이였습니다 11
저 그런사람 아닙니다
-
왜 일반화되는가 1
AG가 아니더라도 cos 제곱합은 2임 x,y,z축에 대해서 어떤 직선이 이루는...
-
당분간 질받글 안올릴 예정이라 쓰려면 지금 이 글 작성시점 12시간 이내의 질문만 받을 생각
-
ㄹㅇ 김치녀 먹은게 드립이아니었냐
-
픽고 성훈 승희 4
승희 성격 ptsd ㅈㄴ온다 하..픽고를 보는게 아니였어
-
삼김 괜히먹었다 1
소화가안됨
-
힌트:김치가 들어감
-
연애보단 결혼하고싶음 12
아이 10명 낳아서 행복하게 살고싶다
-
24수능은 난이도 꽤 있는거 같던데 이정도면 ㄱㅊ아요..? 그래도 화작에 15분은...
-
하나 배웠다 죽은위인 나오면 그분 뼛가루 아니었나요 시전하면 됨 ㅇㅇ 이거 ㄹㅇ 창의적임
-
킬캠 오티떴네 2
오티 재밌음 ㅋㅋㅋ 별별 얘기 많이하네
-
아뭐야 센츄 2
연동계정이면 기본정보 이름으로 바꿔야 하는구나 한달 어케 기다려
-
자격증 시험 수준이면 어카냐 교재 본다고 풀 수 있는 정도가 아니잖아
-
조합 nCr = n!/((n-r)!*r!)에 대해, 이라 할 때, f(n)=2^n,...
-
어싸 70문제 풀었음
공리는 증명 없이 참이라고 믿기로 한거에요. 공리를 기반으로 다른 모든 증명들이 이루어지는거라서 공리에 대한 증명을 논할 수 없음. 모든 증명은 그 기저에 있는 논리를 통해 이루어지는데 공리는 그 증명을 위해 참조할 기저 논리가 없음, 공리가 모든것의 기저 논리니까. 그래서 공리에 대해선 증명을 논할수 없음
(A가 공리)->(A가 증명없음)->(A가 거짓)
따라서 (A가 공리)->(A가 거짓)
공리엔 증명 없으면 거짓이라는게 안통함. 공리는 예외적으로 증명없어도 참이라고 하자 라고 한거라서 애초에 통하지가 않는거임
그건 그냥 수학자들이 합의본거고 실제로는 다를수있지않음?
수학은 애초에 수학자들이 합의한 체계 위에서 진행되는거임. 그 약속된 체계가 현실을 잘 설명할 뿐인거임
난 "공리는 참" 이라는게 증명 또는 반증될수 있다고 믿음.
증명이 없는데 왜 참임? 참일 이유가 없는거잖음
2.
명사 철학 수학이나 논리학 따위에서 증명이 없이 자명한 진리로 인정되며, 다른 명제를 증명하는 데 전제가 되는 원리
자명한 원리로 인정된다는 대목 자체가 수학자들이 합의봤다는 뜻임. 수학은 애초에 자연을 다루는 학문이 아니라 논리학임. 사람들이 만든 논리체계 위에서 작동하는 학문임. 공리는 애초에 그 정의 자체가 증명이 필요 없는, 증명을 할수도 없는 원리라서 0!이 예외적으로 1인것처럼, 공리는 예외적으로 증명을 논할수가 없는거임
참일 이유(증명)이 없는데 왜 참이라고함?
그걸 증명할 기저논리가 없으니까. 공리가 모든것의 기저논리니까. 수학은 공리가 참인지 아닌지를 증명하는게 아니라 현재 수학의 공리들이 참인 체계 위에서 다른걸 증명한다고 생각하면 됨. 그게 맘에 안들면 더 쓰기 편한 다른 공리들을 정의해서 그것에 기반한 수학체계를 발전시키고 수학자들한테 인정받아도 됨. 다만 어떤 체계에서도 공리는 증명을 못함. 그게 공리의 정의임. 이거에 대해선 더 할 수 있는 말이 없음. 공리는 그냥 사람들이 그렇게 정한것일 뿐임. 증명하고 말고 할게 없음. 진짜 그걸로 끝임.
님은 만약 공리의 특징인 "증명없음" 과 "참" 둘중에 하나 포기하라면 뭐 포기할거임?
애초에 포기할수가 없음. 둘중 하나라도 없는 순간 공리는 공리가 아니게 됨. 증명이 없지 않다면 그 공리라고 부르는 논리 밑에 또다른 논리가 있는거니까 공리가 아님. 참이 아니게 되면 그건 그거대로 공리의 정의에 어긋나서 공리가 아님
난 본문내용에 공리가 적용되지 않는다는게 매우 꼬움
어쩔 수 없음. 무언가의 참 거짓을 판단한다는건 그것의 아래에 있는 논리를 참조함. 그 논리의 판단은 그 아래의, 그것의 판단은 또 그 아래의 논리를 참조하는 형태고, 사람의 말과 논리학은 무한하지 않아서 그렇게 파고 파고 파다보면 끝에 도달할 수 밖에 없음. 그 끝이 공리인거임. 애초에 논리학이나 수학은 자연에 원래 있던 요소를 탐구하는 학문이 아니고, 사람이 만든 요소를 탐구하는 학문이라서 그 기본 환경설정을 하고 그 위에 여러 학문적 성과들을 쌓아올리는거임. 공리는 그 환경설정임.
본문 결론은 "(A가 공리)<->(A가 증명없음)<->(A가 거짓)"
인데 공허참도 거짓 전건만 있으면 명제가 참이잖음
그거처럼 전건이 공리고 거짓이라는...
A가 공리와 A가 증명없음이 동치가 아님. A가 공리면 A의 증명은 없는데 그 역은 성립하지 않음. 그리고 그 논리학 체계도 공리 위에 세워진 거라서 증명 없다와 거짓도 동치가 아님. 반례가 공리임
님이 애초에 본문의 전개를 틀렸다고 보니까요..
논리체계에 기반한거면 애초에 공리의 진위여부를 따지는게 불가능하니까
공리의 진위여부를 따지는 근거는 결국 따지고 들어가면 공리인데 그러면 공리가 공리의 진위여부를 따지는 순환논법이 됨. 이런 상황 때문에 공리의 진위여부를 판별할 수 없는거고, 공리의 진위여부를 판별하려는 순간 순환논법의 오류에 빠지게됨
저는 귀류법이 참이라고 치고 전개한거임
다른공리로 공리가 참, 공리가 증명없음 에 대해 증명또는 반증 할수있을거같은데 아닌가요
만약 다른공리를 찾아 증명한다 그래도 그 공리의 증명은 다른 공리를, 그 다른 공리의 증명은 또 다른 공리를... 찾아가다보면 결국 공리는 무한히 존재하지 않으니 어느순간 순환논법에 빠짐
그리고 미안하지만 처음 귀류법으로 증명하고 싶은 명제를 정확히 써줄수있음? 1번부터 그 명제의 결론을 부정한거임?
1번이 참이라고 치고 이어나가서 결국 "(A가 공리)<->(A가 증명없음)<->(A가 거짓)"를 도출했다고 생각함