[칼럼] 신화의 자격 1-그래프는 언제, 왜 부정확할까?
게시글 주소: https://orbi.kr/00072576813
안녕하세요, 신화의 자격/전설의 자격 칼럼 연작을 쓰는 이지은 국어(하예은)입니다.
신화의 자격 칼럼의 타겟층은 현재 성적대와 무관하게 최소한의 머리가 있는 모든 수험생이라고 생각했으면 좋겠습니다
230614입니다 알 사람은 아시겠지만, 당해 대부분의 해설이 소위 뒷북에 해당하며 다음 해가 되어서도 제대로 된 해설은 많지 않았습니다.
당해 대부분의 해설은 단순히 이차함수 g’(x)의 일차항의 부호가 음수일 때, 0일 때, 양수일 때로 분류해서 푸는 것이었는데요
5번 ㄱㄴㄷ를 고른 학생 중에 믿찍 5도 있었겠지만 다수는 그래프를 두어 개 그리고 나서
극댓값을 갖네? 역시 평가원은 대단해
를 외치며 산화했죠. 이런 실태를 반영하여 2024학년도 강사 AGR 연구실은
단정적인 진술이므로 함수 f(x)가 극댓값을 가지지 않는 경우가 있는지 의심해야 한다. 반례를 찾기 쉽도록 y=x^3을 함수 g(x)로 두어 보자
라는 지면 해설을 제공한 바 있습니다. (하얀 커버, 빨간 글씨 까만 글씨 섞임)
이는 위의 해설보다 훨씬 낫다고 생각합니다. 0을 따로 생각해야 할 당위가 없다는 걸 제가 글(포만한)로 쓸 만큼 해설이 어려운 문제이기 때문에 이런 고육지책을 썼다고 이해해 줍시다
그럼 다음 문제로 각자의 방법론을 테스트해 보고 본격적으로 그래프에 대해 설명할게요
출제는 끝났지만 해설 쓸 사람이 없어서 배포 못하고 있는 하예은 3대비 모의고사입니다.
관심 있으시면 여기로 들어와 주세요
먀
ao.com/o/st1rijjh
아무튼 이 문항의 ㄱ 선지는
(1) 가능한 모든 상황을 그래프로 그리기에 매우 부적합하고
(2) 귀류를 쓰면 증가함수라는 의미가 발견되고 그때 a+b=0이므로 하나의 반례가 구성된다
는 특징을 가지고 있습니다. 이때 이 문항 출제의도가 귀류가 아님에도 귀류로 풀면 잘 풀린다는 점에서 AGR 연구소의 230614 해설이 바람직한지 여부를 떠나 출제의도와 부합하는지는 의심할 수 있죠
처음으로 돌아와서, 그래프가 부정확한 순간은 언제일까요?
대답을 바로 해야 한다면 대부분
특수한 상황일 때, 더 정확히 말하면
특수한 상황(유한한 경우)과 일반적 상황(무한한 경우)가 다를 때
라고 말할 텐데요, 자세히 생각해 보면 이건 동어반복에 가까운 말임을 느낄 수 있습니다.
하지만 아닙니다. 사실이 아니니까.
고1 때 원과 접하는 직선의 개수를 중심과 직선 사이의 거리로 다 못 계산하는 걸 보았죠? 그때 식으로 얻을 수 없는 기울기가 무한이죠?
그리고 기울기가 무한인 기울기의 개수 또한 무한한 경우이잖아요.
직관이 틀린 상황에서 우리는 자료를 통해 생각을 재구성해야 합니다.
230614의 ㄴ은 식으로는 이차함수가 극값을 가지는 확정적 순간이, 꺾이는 지점에서 극값이라는 잠정적 순간과 상쇄되어, 그래프로는 이치힘수가 극값을 가지는 잠정적 순간을 확정적으로 여겨서 발생합니다.
뭐요시발왜요
그래프에게 유한한 건 식으로는 무한할 수 있으니까.
하예은모의 ㄱ은 같은 프레임을 따라
식으로는 삼차함수가 증가한다는 확정적 순간이, 그래프로는 삼차함수가 꺾이는 잠정적 순간이
a=b=0과 상쇄-참이지만 그 함의가 변질된다는 점에서 그렇습니다-되기 때문
으로 해석하면 되죠!
세 줄 요약
식-확정적
그래프-잠정적
부정확-상쇄
심화 내용은 전설의 자격 1편에서 보겠습니다. 이건 스스로 남다른 기질이나 재능이 있다고 믿는 분들만 보시기 바랍니다.
0 XDK (+2,000)
-
2,000
-
이게 머야, 노잼이야
-
오늘이 지나면 0
넌 사라질 먼지 사랑이 먼지이
-
나머지는 다 너무 쉬움
-
아무것도 몰라 하는 저 표정 좀 봐요
-
내일 아침에 먹는다
-
1월달에 친구랑 술먹다가 들었던 건데 고2때 인스타 스토리로 증명사진찍은 걸 올렸던...
-
현실에선 그냥 기어다님
-
어느정도 공부에 관심 있는 사람들이 찾아서 오는 커뮤니 어느정도 실력이 있다는...
-
안그럼 요즘 잠이 안오더라고
-
인서울 높공 전자공학을 꿈꾸고 있는 학생입니다. 그런데 제가 공부할 때 처음에는 좀...
-
크아악
-
다 잔다 이거지 4
난 겜한다
-
요즘 느끼는거 5
귀차니즘이 많이 심해짐 근데 도파민을 찾아다님 근데 도파민 내용에 나는 없어야함 인생ㄹㅈㄷ
-
뭐 잔다고? 19
나 ㅇㅈ할건데 댓글 시발럼들아
-
안녕히 주무세요 6
잠 잘자고 여러분 같이 의대 갑시다
-
자지마라 제발 2
난 지금 오르비밖에 없는데..
-
친구관계는 1도 인생에 필요하지 않음 아무리 친해도 심각하게 싸우면 다시 싸우기...
-
그럼.. 공부도 gpt없이하고 과제도gpt없이했다고요? 어떻게요? 꺄아악
-
또 나만 찐따 ms임 외로움 오르비를 할수밖에 없음
-
bxtre.kr/
-
새벽마다 나 6
띠발..
-
아니 진짜로 못생겻는데 그럴리가 없잖음 상식적으로
-
vs 먹산 중에 뭐 사야 됨
-
니 남친 지나간다 2번(버스, 학교 복도) 그냥 웃겨서 웃고 있었는데 야야 쟤...
-
범위가 있는 증/감 문제에서 도함수를 구할때 미지수를 일일이 구하고 인수분해하는...
-
니 성격을 봐라!!!!!!!!!!!! 거울도 보도록!!
-
생기부 수준 1
생기부 수준 어떤지 알고싶으면 사설 업체 컨설팅 밖에 없음요?
-
TOP.3 2
1.동아리 2.이층침대 3.이웃사촌
-
ㄹㅇ 맛있네요 그보다 너구리 소스 반보다 더 넣어도 될듯
-
속옷 훔치는 사람의 속옷을 훔쳐오는거임 ㅋㅋㅋㅋ 가격은 법적 분쟁의 위험이 있기에...
-
편하게 다 맞으면 뭐 풀어야 하나요 고1인데 고쟁이 올고 절대등급 메가N제...
-
오늘은 2
새벽 3시나 4시 쯤에 자야지
-
형 옷 입었다. 2
일진이 카톡으로 빵 심부름 시켜서 빵 사러 나간다... 먹고살기 힘드농
-
급비호감. 공룡 같은건줄 알았네
-
아니 나 쿠팡 가니까 귀신같이 ㅇㅈ메타 도는 거 먼데 3
ㅠㅠㅠㅠ 억울해 진짜
-
나도 설레고싶다 1
-
찐 노베들을 위한 글 10
1. 기출 실모 n제 이런 것들 진행하는 순서는 어떻게 되나요? 보통 개념 강의를...
-
마 13
잘자라
-
수험생 카페인 4
매일 박카스 하나씩 먹는중인데 요정도는 괜찮겠죠 잠은 5~6 시간 정도 잡니다
-
배고픈데 야식추천좀 13
냉장고에 편의점 훈제앞다리 사놨는데 동생이 먹었더라..
-
얘 감귤이에요? 17
감귤같기도 하고 레몬인가?
-
손만 잡쟈 11
허튼 짓 안 해용
-
썸타보고싶다 0
라는 이상한 말은 하면 안됨
-
현역 국어 4등급 강기분 공부법 제발 도와주세요.. 0
제목처럼 강기분 공부를 하고 있습니다 강기분을 어떻게 공부하냐면 먼저 시간 재고...
-
ㅇㅈ 못하겠네
-
유급하면 되나요? 어떻게 되는거죠
-
심사의 익명성을 지키면서 다른 문제들을 예방하기 위해 좋아요 점수를 없애고...
-
수험생 커뮤에 지얼굴 까는 문화가 있는게 이해는 안되지만 뭐.. 고유한 전통이라...
-
무쌍 장발 피어싱 13
키 크고 잘생긴 사람을 먹여살리고 싶군
GOAT

“부정확-상쇄”극한상쇄가 저의 문법에 따르면 헛소리가 아닙니다. 한 극한이 다른 극한에 먹히는 것도 저는 상쇄라고 불러서
닉언 ㄷㄷ
님이 포만한 그분이셨구나
헉 포만한도 하시는군요
포만한에선 비교적 라이트유저입니다
첫문제는 정보량 관점에서 보면
f정적분한걸 좌변으로 두고 g와 -g로 구간별로 정의된 함수로 두는게 더 문풀에 도움이 될거 같다는 교훈도 있네요
연의 goat
외쳐 대예은