[칼럼] y절편을 줬으니까 좌표를 쓰는게 맞다니까?
게시글 주소: https://orbi.kr/00072509242
아님.
정확하게 말하자면 좌표계를 이쁘게 그려서 문제를 접근하는게 아님.
물론 기본적으로 좌표평면에 나타낸 지수로그 문제니까 좌표계의 툴을 이용하긴 하는데, 이쁘게 로그함수 2개 그리고 직선의 방정식 잡고 난리를 피우는 문제는 아님.
어떻게 접근해야 하는가? 우리가 이미 귀에 못이 박히도록 들었던 지수 로그함수의 기본인 비율관계에 집중한다면 암산도 충분히 가능한 문제임.
문제를 보자면 y=log_2(x) 위에 두 점, y=log_4(x) 위에 두 점을 각각 잡아놓았는데, 아무리 공부가 부족한 학생이라도 log_4를 그대로 두진 않았을거임. 4=2^2니까 log_4가 아니라 1/2log_2로 보여야 됨.
그러면 몬가 우리가 좋아하는 비율관계가 등장한 거 같은데, 그 다음으로 오는 조건이 뜬금 없어보임. 두 점을 이은 직선끼리의 y 절편이 서로 같다.
그러면 y 절편 기준으로 직선을 그어야 하는데? 비?율관계 써먹기가 되게 까다로워 보임. 자고로 좌표계에서 비율관계라 함은 그 근본이 원점이 되어야 할텐데, 직선끼리의 교점이 저래서야 비율관계 제대로 나타내기가 어려워 보이니 이 단계에서 ㅈㅈ치고 열심히 식 세워서 풀다가 y 절편이 원점 나와서 허탈해 한 학생이 많았을 거 같음.
그럼에도 불구하고 이 문제가 '수능'에 출제된 지수로그 함수 문제라면 이걸 단순한 계산으로 밀어서 풀게 두진 않았을거임. 단순 계산은 2-3점 문제로도 차고넘치게 있으니까 우리는 여기서도 사고를 통해 과도한 계산을 피하는 방법으로 끊임 없이 생각을 해야 됨.
문제에서 주목해야 될 부분은 y 절편이 맞긴함. 그런데 단순히 y절편이 같다고 해서 (0, c) 잡고 직선의 방정식 세우지 말고, y 절편의 가장 큰 특징인 x 좌표가 0이 보장된다는 것을 떠올리면 우리는 문제에 제시된 두 직선에 대해서, 구간 [a, b]와 구간 [0, a]로 나눠서 관찰해야겠다는 느낌이 올거임. 또한 같은 직선을 구간을 나눠 관찰할 때는 서로 공통되는 요소인 기울기에 집중해야 한다는 점까지 끼얹으면 다음과 같이 사고를 전개할 수 있음.
그러면 문제는 끝났음.
이렇게 언제나 문제의 핵심이 되는 요소에 집중하면, 지수로그함수의 경우에는 비율관계와 좌표계의 룰에 대해 생각을 하고 풀이를 전개한다면 산수를 벗어나 진짜 '수학' 문제를 풀 수 있음.
결론)
비율관계
기울기
다이스키사
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
닉네임바꾸고싶다 3
이게 무슨 국어칼럼올리던 김승리도 아니고 물괴가 뭐임.. 만우절날 티나게...
-
06년생 파이팅!!! 11
06파이팅!!!
-
좀 많음 뭐 수학 엔제 뭐풀어야하나요 인강강사 추천해주세요 이런건 ㄱㅊ한데 특정...
-
고닉, 테색깔있는 사람들 질문에는 어지간하면 무조건 답글 있음.
-
영어학원 조교쌤인데 어떡함... 하 진짜 개이쁨 와 ㅋㅋㅋㅋㅋ 미쳤네.. 집중이...
-
3덮 빌보드 안나오나요? 다니는 곳 바로 옆에 다른 센터있어서 빌보드 보고 거기로...
-
커뮤치고 이런 이모티콘 ui등등을 되게 잘만든거같음
-
현재 수학은 공수1,2 나갔고 행렬은 못한상태 시발점 대수진행중 공수1은...
-
어느정도 인가요?
-
근데 템이 안뜨는걸어떡함ㅜㅜ
-
없으면 말고
-
진짜 맞긴 함 10
팔로워 팔로잉 없는 저렙 노프사 질문러들. [수학 능력자 분들 수(상) 질문...
-
설마 이거 불러본 분 있나요?
-
팔로우 걸어주세요 소통해요 ^^
-
카이스트 정시 5
얼마나 빡세나여
-
외쳐 야! 2
동서독
-
사실 그 덕 뮐 전부 호감임 전부 떠나가는구나...
-
무려 18년도부터 나왔던 유구한 논쟁...
-
그리 오래되지 않은 과거만 해도 대형호감고닉 필두로 친목이 이루어지기도 했고 친목에...
-
대충 이런 거 기획중입니다. 칼럼 작성 경험이 있으신 분 시간 투자를 할 수 있을...
-
오르비 12월생이야 노베라 질문글 답도 못해줘..ㅜ
-
옯스타 잘 관리해서 진짜 친목다지면 다들 고학력자들인데 큰일을 도모할 사이로 발전할수도 있잖음
-
맨유팬인데 0
덕배의 마지막 맨더비라니.. 앞날에도 좋은 날들 가득하길 응원합니다
-
영어) 고3 250339, 250330 풀이해봤습니당 0
오답률 top 1,2에요 제가 풀 때 떠올랐던 생각이랑 풀이 방식 간단하게...
-
플리 ㅁㅌㅊ? 5
1000% (써머위시) we go (프로미스나인) 유리구슬(여자친구)...
-
커하 국어 93(고3 7모) 수학 94(고3 5모) 영어 1 한국사 1 사문...
-
무슨느낌이었을까
-
나도 뉴빈데 9
소통좀 해줘요
-
총체적인 논의가 다 들어감 https://orbi.kr/00072740989
-
걍 타고난 머리가 ㅈㄴ 좋으묜 됨
-
김범준 인스타 들어가봤냐? 카나토미 ot에서 자기 아들이 이제 초등학교 들어가는데...
-
시대인재 현정훈 0
현정훈 듣는데 볼텍스나 브릿지 이런건 의무구매인가요? 그리고 이 컨텐츠는...
-
어쩌면 어린 애들 놀이 같아~
-
요즘 제 웃음벨임뇨 우하하 빵빠레 ²
-
ㄹㅇ 잘하긴함
-
둘다 나 좋다는데
-
지금 가서 사올거임
-
예전글 살펴보면 3
결혼소식 알리는 글도 있더라구요 닉네임 누구누구 결혼식 청첩장 비슷한거 올리고 막...
-
그냥 그런 느낌이에요
-
나 과외생 수업해야대서 풀고있는데 대충 편차있긴한데 50~55분 걸리는데 이거맞냐?...
-
https://orbi.kr/0004545505 오늘 아침 갑자기 핫해진 이슈인...
-
이번 주 힘들었는데 힘난다 열시미 해야징
-
어쩐지 너와 걷고 싶었던 바닷가설레임에 출렁이는 파도처럼시원한 바람을 머금은...
-
물론 제가 뭐라고 커뮤를 재단할 수 있는 사람도 아니고 제 말이 무조건 옳은것도...
-
진짜모름!
-
초창기에 오프라인모임 잦고 연락처 서로 알고 형동생하던 시기에 대해 알려주면 기겁하실듯
-
하 시발 ㅋㅋ 그냥 수능 접을까
-
아케인, 블리치, 룩백 축하드립니다.
-
가장 이해안되는 글이 뭔가요??????? 글은 논리적인데 독해능력이 딸려서...
22수능 13번
ㅇㅇㅇ
스크랩.
다이스키
진짜 급할 때 쓰는법
선생님 이 문제가 급한 친구들은 그런 발상 못합니다...
아아아앗
현장에서 일단 일케했는데 십 ㅋㅋ

지수 성질을 극한까지 뽑아내기머리를 비틀면 계산을 덜하게 된다.
계산을 더 하면 머리가 편해진다?
그러네?
국어에서 중요한 관계파악이 다른 과목에서도 쓰이는 케이스
제발 국어해라..