적분시 원시함수의 미분가능성
게시글 주소: https://orbi.kr/00072494531

수학에서 적분을 할때 그 원시함수는 미분해서 현재 내가 적분하려는 함수가 된것이므로 항상 미분가능이라고 생각 할 수 있나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
스블 필기노트 0
받으셨나요?
-
카톡 오픈채팅 만들면 들어와주실수 있나요
-
메타가 끝낫군
-
연계 대비용으로 푸려고 하는데…
-
처 비꼬는 건 뭐 모르겠고 없는 학과 만들어가면서 남의 학교 이름 들먹이는 이유가 뭐임?
-
근데 러브젤(제로콜라)가 빠져서 걔는 따로 갖다달라고 함 배달 어플에 이런 기능도 생겼구나
-
12번 답 ㄴ 이어서 1번인데 빠답에 2번이라 되어있네요;;; 방금 오답하다가 찾음...
-
지금 임정환 리밋만 둘 다 듣고 기출분석은 하나도 안했는데 임정환 임팩트 들으면서...
-
수학 과외중인데 오늘 과외생 2명 더프 수학 둘다 60점대 받았네요.. 문제보고...
-
??
-
요즘 기준 보통 집안이 어느정도 잘사는 축? 아 학부는 서울대...
-
조금더프러보고싶으신가요?
-
11?99
-
헤븐약대로 유명하잔아
-
내일 점심 2
햄부기
-
영어 :토익으로 대체 한국사 :한능검으로 대체 1교시 국어 독서 4지문 17문제...
-
애들 멘탈만터진다고 원장님이 없앰
제가 아는 지식선에선 이렇읍니다
F는 불연속이 될 수 없습니다
f가 F의 도함수잖아요?
F가 불연속인 점이 있다면 그 점에서 미분계수가 없겠죠
그럼 f도 불연속이어야하는데 아니죠?
그리고 f를 적분했으니 F는 미분가능하다
맞읍니다.
정확히는
F는 f가 연속인 지점에선 불연속일 수 없습니다
가 맞겠네요
고등학교 교과서처럼 부정적분을 단순히 미분의 역연산으로 정의하면, F(x) 가 x=a에서 미분불가능하면 f(x)가 x=a에서 정의되지 않으므로 맞습니다.
다만 저 그림은 틀린것같네요. F가 저상황이면 f에 구멍이 뚫려야합니다.