[칼럼] 수학 근본적으로 잘하는 법
게시글 주소: https://orbi.kr/00072472515
안녕하세요. 첫 칼럼으로 인사드립니다.
첫 주제로 어떤 글을 써야 할지 고민이 많았는데,
제 경험으로 미루어 보아 어떻게 하면 수학을 잘할 수 있는지에 대해 써보려고 합니다.
수능수학을 공부하는 수험생의 입장에서 가장 중요한 것은 "무기 만들기"라고 생각합니다.
제한된 시간 동안 빠른 사고를 요구하는 시험인만큼 여러 방식으로 접근할 수 있어야 하는 건데요.
바로 예시문항으로 보겠습니다.
공통수학 2의 평면좌표 단원 문제입니다.
대부분의 학생들이 P의 좌표를 P(a, b)로 두고,
거리 조건, 직선 위의 점 조건 2개를 연립하여 푸는 풀이를 아실 겁니다.
하지만, 이 문제를 풀고 난 후 다른 문제로 넘어가기 전에,
다른 풀이가 있을지 고민하셔야 합니다.
우리는 항상 시험장에서 막힐 시에 대응책도 가지고 있어야 합니다.
한 번 익숙해진 풀이를 계속 갈고 닦으셔도 되지만, 이는 수학적으로 유연한 사고를 막습니다.
비유를 하자면,
익숙한 풀이대로 문제를 푸는 것은,
한타에서 중력포만 쏘아대는 아펠리오스와 같습니다.
F + D 파워슛만 갈겨대는 호나우두와 같습니다.
그럼 다른 풀이를 한 번 보겠습니다.
두 점으로부터 같은 거리에 떨어져 있는 점의 자취는,
두 점을 이은 선분의 수직이등분선을 이룹니다.
그럼 거리조건을 만족하는 점의 자취를 직선의 방정식으로 표현할 수 있을 것이고,
점 P는 x+2y-3=0 위의 직선 위의 점이기도 하므로
두 조건을 동시에 만족하는, 즉 두 직선의 교점을 찾는 문제라고 해석할 수 있습니다.
결론적으로, 도출된 식 2개는 같은 형태를 이룹니다.
비교적 쉬운 문제라 이렇게 푸는 것이 의미가 없을거라 생각하실 수 있지만,
어려운 문제를 푸는 것 또한, 기본적인 발상에서부터 출발합니다.
각 문제에 대해서 한 번 접근해보는 것은 수학적 사고력을 기르는데 큰 도움이 될 겁니다.
그럼 다음 문제도 한 번 여러 풀이들을 한 번 떠올려주시길 바랍니다.
미리보기 방지
첫 번째로, 외심의 좌표를 C(a, b)라고 두고 연립방정식을 푸는 풀이가 있겠네요.
두 번째로, 중학수학에서 배운 외심의 정의를 이용합니다.
외심을 다른 말로 하면, 세 변의 수직이등분선의 교점입니다.
첫 번째 문제에서 구했듯이 수직이등분선을 2개만 작성하고, 교점을 구하면
그 점이 곧 외심의 좌표일 것입니다.
세 번째는, 원의 방정식을 이용하는 것입니다.
원의 방정식의 일반형을 떠올리면,
미지수가 3개인 연립일차방정식을 푸는 문제가 될 것입니다.
이후로는, 어떤 풀이가 이 문제를 푸는데 효율적일지 분석해주시면 됩니다.
제가 생각하기에는 2번 풀이가 가장 간단하다고 생각합니다.
또한, 문제에서 어떤 조건 때문에 그 풀이가 가장 간단한지,
조건이 어떻게 달라지면 다른 풀이가 유용할지도 떠올려주시면 분석은 끝났다고 생각합니다.
이 과정 속에서 잊어버린 중등수학 개념도 복기할 수 있고,
본인 나름의 문제 풀이 전략을 정립할 수 있을 것입니다.
문제들마다 다른 방법으로 접근하는 것이 오래 걸린다고 하면,
대부분의 문제집에는 학생이 떠올릴 수 있는 다른 풀이들이 기재되어 있으므로
적어도, 해설지의 [다른 풀이], [별해]은 꼭 읽어보시길 바랍니다.
글 읽어주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
맨날 배탈난 상태로 악으로 깡으로 앉아있으려니 고역이네
-
처음에 대칭개념 설명해주는데 원점에대하여 대칭이면 x,y둘다 부호를 바꾼다고...
-
머임 2
갑자기 피크 오ㅑ케 많이 올라와있어 나 아직 외행탐이라고
-
ㅁㅊ 왜 이럼
-
문과 엉엉 11
원래 로스쿨 가고 싶기도 했고... 수능에 아쉬움이 많은데 반수를 할까요.......
-
내 사진은 하나도 없고 남의 사진만 가득하네요,, 신생아일 때부터 지금까지 전부...
-
11 21 22 28 29 30 틀렸습니다 미적은 도저히 시간분배가 안되네요ㅜㅜㅜㅜ
-
1
-
더프 국어 0
화작 85인데 2~3 무보로 가능할까요?
-
고전소설도 길고 복합도 길고 가나형도 이해 빡세고 5모정돈 돼야 쉬운거 아님..?
-
다듣고 마더텅 들어갈까요 아니면 병행할까요
-
아인생 6
답없네
-
이거 문학론도 있어야되나요?? 시간없음 + 어차피 현역때도 김상훈쌤 외길인생...
-
반수각 잴려고 풀어봤는데 이건 뭐 문제가.... 본인 체감상 20보다 어렵던데 ㅋ;;;
-
올해 수능에 끝내야하는 노베 공뷰늦게시작한 군수생인데요 비기너스 수1 수2 기하까지...
-
미적은 1년공부해서 n수생 못이길것같지만 수1수2 나름 다져진 나에겐 정배 사실 잘...
-
연계교재에 나오는 개념들 상세설명같은거 다 있나요
-
못본지 10년은된듯 흑흑
-
북, 새 구축함 물에 띄우다 파손 사고…김정은 "용납 못해"(종합) 8
사고과정 지켜본 김정은 "국가권위·자존심 추락…6월까지 무조건 복원하라" 측면 진수...
-
솔직히 공대나 경영보다 순수학문 쪽이 더 나은 것 같은데 8
왜 입결은 전자가 대부분 더 높은지 모르겠음 ㄹㅇ 세상은 순수학문이 바꾸는 건데
-
제 풀이에서 -a/2+10 과 -a+10은 5차이다 라고 두면 왜 안되는지...
-
더프 국어 5
작수 6끝에서 올해 5월 더프 85점이면 많이 오른건가요..? (시간 없어서 가,나 지문 날렸어요)
-
화작 79 확통 63인데 3 4 뜰 수 앗을까요......
-
국어 표준국어비판 4강 수학 노베 도형 theme3 영어 공감영단어 레벨1 day1 일리 2,3강
-
군수생 달린다 5
야근하는 날에도 달린다
-
아이잉 23
제 애교 어때요
-
너무 짜증나네 7
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
과자추천좀 2
오늘은 먹을거임
-
아무도 관심이 없네 심지어 유빈이조차도..
-
현역 5모 ㅇㅈ 6
물2 표본 ㅈ댓네 영어는 그냥 유기함 ㅇㅇ
-
고장 안나고 가성비 좋은거 추천 부탁드려요 수능때까지 쓸거에요...
-
맨날갇혀있으니까 재미가없다
-
얼마전에 듣기로는 울의를 갔다네.. 세상 참 알수없다
-
나한테 국물이라도 떨어지길 원하지 내가 속한 집단이 발전하길 원한다거나 그런 거창한...
-
아니 나 진짜 0
현여기랑 실모배틀 뜨면 쳐발릴듯
-
나머지는 왜 그러는거임 도대체 뭐 시벌 허수볼때 같이 봤냐? 딮기 욕할거면 꺼지십쇼...
-
5모 이후 사탐런 세지 사문중에 6모전 뭐하면 젛나요? 2
개념은 둘요안해서요 6모전에 개념 조금은 듣고 싶은데 둘중에 개념먼저하먼 좋을것...
-
이제는 더 미루면 안돼
-
수능 직후 정답외운뒤 죽으면 응시직전으로 돌아갈수있자나
-
부탁이다
-
난 버러지야
-
가계도 문제수 0
몇문제 나오냐요??
-
The unfolding of Spirit in history does not...
-
허슬독서 0
시간안에 다 풀리긴하는데 ㅈㄴ 많이 틀리네 야발 문학은 정답률 괜찮은데...
-
들어가야할듯 주변에 낮공대 다니시는 분있는데 마땅히 취업루트가 정해져있지를않아서...
-
정병도진다 4
시험만 앞두면 정병 도져서 집중이언되고 똥마려운 개마냥 초조해짐 에휴…
-
빈칸 자작 킬러 4
Language, when abstracted from its use, tempts...
-
몰아놓은책 업ㄹ음?
-
이번 덮 국어 2
4덮이랑 비교했을 때 많이 쉬운 편임??
-
집중이 안된다 도파민이 필요해
중력포도 못 쓰고 죽는 아펠리오스라서 울었어