샌드위치 정리에서 등호 없어도 임의로 넣을수있나요?
게시글 주소: https://orbi.kr/00072468924
문제에는 등호가 없는데 무한대 극한으로 보냈을때 등호 넣는게 가능한지에 대한 질문입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
거실에 0
아빠가 자고있음 화장실가면 깨려나
-
잘 4
자요
-
낭만의 언기물지 4
참가부탁
-
안되는 것을 될수도 있는 것으로 착각해서 여기까지 왔는데 안되는 것을 깨달았지만...
-
다 덮인 앞머리 있는 상태로 나가는 걸 존ㄴㄴ나 싫어함
-
행복하지마요 2
행복하려면 사랑한 날 잊어야 하잖아 가시가 박힌듯 숨쉴때마다 눈물이 흘러와 사는게 사는것이 아니죠
-
눈물이 2
주르르
-
사1 과1 하시는 분들이 많이 보이시는데 사1 과1의 장점이 뭐라고 생각하시나요?...
-
뛸 준비하기
-
오마이갓 5
불끄고 폰하니까 눈에 피로감이 으읔
-
잘거야 4
7시에 기상해야해 짜증도 자고일어나면 풀리겠지?...
-
달리살기. 1
누울 때 일어나고 일어날 때 걷고 걸을 때 뛰고 뛸 때 날기
-
센츄 다신분들 0
저도 이번 3덮 국수 표점으로 신청하고 싶은데 계열기준에선 1% 넘어기고...
-
3옥레 성공. 6
하나레 바나레에테모 토키메에쿠모노오
-
ㅈㄱㄴ
-
저는 성적 취향 모름요 29
생각해본적 없어요 아물론 저번학기 성적 주면 절하고 받슴니다
-
스카 다니면서 독재했는데 공부 시간은 어느 정도 나오면서도 너무 생활패턴이...
-
뭐가더낳냐
-
조까튼 월요일 5
축구도 비겨서 짜증나
-
좀 니글거리네 2
빵이 남았어... 야식의 부작용인가
-
히 이이 히 이이 이이 히 이이
-
그건 있다 학문적 적성을 판별하는데는 꽤 유용함 개념을 빠르게 받아들이고 적응이 잘...
-
쇼타 투척 0
음 역시 귀엽군요
-
어차피 내일 학교 안가는데
-
뭔잠이여 ㅋㅋ 10
내가 와따 잠 안옴 낼그냥 커피마시고 저녁까지 버틴다
-
어지러워요
-
담에봐 내일올려나 오겠지 내일봐
-
맛있게 와구와구 먹는중
-
경기력 병신어휴 0
이딴경기력으로 무슨 챔스를 나가겠다고 이 시발아
-
이기지 않은것. 그런거에요
-
이거 진짜라는 거임
-
방구석 여포임 단점은 현실노잼이라는거임...
-
지가 처 돌아가놓고 나보고 반말하면서 화내는 택시 등장
-
혼자 가야지!!
-
성격이 문제야 4
성격이 문제라고 생각함 에효효
-
내일 아침에 먹는다
-
1월달에 친구랑 술먹다가 들었던 건데 고2때 인스타 스토리로 증명사진찍은 걸 올렸던...
넵 an<bn<cn이어도
극한 취하면 등호 붙습니다
이건 원리를 외우는게 나을까요 아님 그냥 사실로 외우는게 나을까요?
그리고 극한을 취하기만하면 어디로 가는지 상관없이 가능한건가요?
참고 쪽 보시면 될 듯합니다
그냥 알려진 사실로 받아들여야 할 듯 하네요
a_n = 1/n
b_n = 3/n
c_n = 2/n
네 교과서에나와있어요
넣을 수 있습니다. 질문을 간단히해보면, an <L 이면 liman <=L (작거나같다) 가 성립하는지 여쭤보시는 것 같은데요. 고교 과정에선 그러한 예시가 있으므로 등호를 넣는다 정도로 설명합니다. ex) an=1/n
다만, 수열의 극한을 입실론(e)을 이용해 설명하면 명확히 설명도 가능합니다. liman=L 이라하면 적당히 큰 자연수 N에 대해서 an-L의 절대치가 e보다 작기 때문에 L-e<an 이구요, an<A 라 한다면 L-e<A 일겁니다. 그러면 상한과 하한의 개념에 따라 L은 A보다는 작거나 같을 겁니다. 그러니 liman <=A 겠죠
이러한 설명을 고교과정에서는 할 수 없기 때문에 극한이 작동시 부등식에서 등호를 포함하게 되는겁니다.
사례로만 이해하셔도 충분합니다 ^^
극한의 x가 어디로 가던 상관없는거 맞죠?
네 그렇습니다. 무한대로 가는 경우에는 e-N 모델로, 특정 상수로 가는 경우에는 e-d 모델로 설명되어서요. 아주 직관적으로, 부등식 양변에 lim 를 취할 시 등호가 발생한다 정도로 기억하셔도 고교과정에서 아무 문제 없습니다~