모 커뮤니티에 작년 6월에 올린 6평 공통 객관식 리뷰
게시글 주소: https://orbi.kr/00072449709
1~7번까지는 무난
8번: 두번째식 양변 16으로 나누기 r<0
9번: 기출복붙
10번: (나)는 결국 이등변 그러면 삼각형 변길이 비가 나옴
11번: 무난
12번: 무엇을 변수로 두냐의 문제인데
결국 취향문제긴한데 나는 변수개수를 늘리더라도 식 부피를 줄이는걸 선호함
시험장에서 진짜 급하면 답이 결국 1.5CDCA니까
역추적 시도해서라도 풀어야함.
요즘 실모는 10~13에서 흔드는거 자주나와서 이미 훈련했어야 했음
(2023 6평 10번/2024 6평 12, 13)
13번: 원래는 9번문제 유형
14번: 우선 n이 n<15이므로 대부분에 되고 안되는게 소수임을 인지
-n²+10n+75>75-kn>0
n<10+k and n<75/k
일단 자연수가 12개이므로
k=3~6 대입
k=3-> ok
k=4-> 13개라 안됨
k=5-> 14개라 안됨
k->6->ok
끝
정수 and 부등식은 값의 상한과 하한을 감잡고 가야함
15.
k가 0이상 조건줌->ㄱㅅ
g가 미가이므로 f(k)=k, f'(k)=2
f(x)=(x-k)³+a(x-k)²+2(x-k)+k
어떤 꼴이든 쓸수 있다 생각하고 일단 keep
(나)의 첫번째 식의 좌변 다항식의 도함수는
[0, 1]에서 0이고 (1, inf)에서는 g(t)와 부호 동일
(-inf, 0)에서는 g(t)와 부호 동일하므로 음수
따라서 g(t)t(t-1)을 1에서 양수 x(x>1)까지 적분했을 때 0이상이므로 증가함수 g에 대해 이걸 만족하려면 k<=2
두번째식을 주물러보면
좌변 다항식의 도함수는 (-2, 1)를 제외한 구간에서는 항상 0
(-2, 1)에서는 g(t)와 부호 동일
k>=2이므로 g(t)는 (-2, 1)에서 감소함
결국 k>=2이면 됨 따라서 k=2
g가 증가하므로
3(x-k)²+2a(x-k)+2의 (k, inf)에서의 최솟값이 0이상
미적분응시자는 여기서 생각을 바꿀 수 있음
3x²+2ax+2의 (0, inf)에서의 최솟값이 0 이상이면 됨(2018 9평 가형 30번)
a>=0이면 항상 성립
a<0이면 a=-루트6이상
g(k+1)=3+k+a이므로 최솟값은 5-루트6
공통 객관식만 살펴보면 전체적으로 포장지만 요란하지 기출의 내용을 잘 담은 소위 말해서 '족보대로 낸 시험입니다.'
문제를 잘 읽고 출제자의 의도를 캐치해서 구조를 단순화하고 필요한 계산만 수행하는 것을 연습해야합니다.
이제 점점 시간이 부족해질겁니다.
현역 n수 모두 조금만 나태해지면 앞으로 수능수학은 가혹하게 점수를 깎아갈겁니다.
공통 주관식/ 선택에 대한 썰도 추후에 남기겠습니다
저때 댓글 1개 달려서 추후에 남기겠다는 약속이 있었으나 썰 안풀었음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
X랄 X스 X위 3
모랄레스 증위
-
내년 메가패스 4
내년에 현역되는데 살 필요 있을까요? 지금도 강의는 수학 시대밖에 안듣는데..
-
풀어줄사람 구함
-
군상극을 원함 실존적 존재들의 투쟁을 그리고 싶음
-
원래 저는 옆투블럭다운펌 뒷머리상고 했는데 그냥 이번에는 다운펌도 안하고 커트만...
-
배터리가 4
5퍼밖에없는데 이거 어카지
-
안 타서
-
비호감들중에 그나마 제일 나은
-
수열의극한8문제 이차곡선8문제 이럴바에그냥형식만22+8로하고공통만내면안되나
-
차악과 자폭을 고려하지 못한 자들아 트럼프는 자기가 할 일을 숨기지 않았다
-
과탐 나머지 하나를 사탐으로 바꿔서 사탐만 2개 하면 지원가능한 의치한약수 풀이...
-
도대체 언제 바뀜??? 양당구조 지들도 알고 있으니까 지들 맘대로 엉터리 두명...
-
99 91 1 99 98
-
금요일 밤 1
독서실에 간다고 엄마한테 뻥치고
-
잇올에서 시대컨 6
다들 서바이벌 나오면 사실건가요? 29주치라고 해도 한번에 270만원은 좀 부담스러운것 같은데..
-
행성 2712 3
행성 2712 -작자 미상 지는 나의 계절은 다신 오지 않는 듯 어두워지고...
-
막 읔엨 된다는데 너무 궁금함
-
아니면 저 꽁댕이 벗겨야함? ㅅㅂ 어케 벗기노
-
실시
묻히면 글 쓸 동력이 사라지죠
여긴 2개니까 썰 풀어주시죠
념글은 가야 썰을 더 풀죠 2개로는 쇼당이 안붙음

일단 전 누름이정도 고퀄글이 왜 묻혔는지 의아하네요