[하드워커 생1 칼럼] 독립 표현형 가짓수 ≥ 연관 표현형 가짓수
게시글 주소: https://orbi.kr/00072284844
안녕하세요, 생명과학 I 과목을 가르치는 하드워커입니다.
‘여러 가지 유전’ 단원(‘유전 현상’, ‘형질 교배’ 등으로도 불리는 단원)에서 쓰이는 잡스킬 4가지를 설명해드리기로 했는데요, 오늘은 그 중 3번째 내용을 소개해보겠습니다.
1. 이형 염색체 논리
2. 무시
이 두 가지 내용에 대해서는 이미 설명했으니 궁금하신 분들은 위 링크를 참조해주세요!
오늘은 ‘3. 독립 표현형 가짓수 ≥ 연관 표현형 가짓수’ 에 대해 설명해보도록 하겠습니다.
지난번과 마찬가지로 제 교재 내용을 붙여넣고, 설명할 부분이 있으면 추가로 해보겠습니다.
“유전자형이 같을 때, 독립일 때의 표현형 가짓수는 연관일 때의 표현형 가짓수보다 크거나 같다. 이 원리를 이용해서 우열 관계나 유전자형의 일부를 추론할 수 있는 경우가 가끔 있다.”
같은 유전자형을 가질 때의 표현형 가짓수가 ‘독립≥연관’임은 자명합니다. 이해가 안 되시는 분들은 부모가 AaBbⅹAaBb일 때, 독립과 연관일 때 각각 유전자형의 가짓수가 어떻게 나올지 생각해보시면 이해가 되실 겁니다.
“예를 들어서 사람의 상염색체 유전 형질 (가) A > a or A = a, (나) B > b or B = b, (다) D > d or D = d (2연관 1독립)가 있고 부모의 유전자형이 AaBbDD와 AabbDd인데, 자손에게서 나타날 수 있는 표현형이 최대 12가지라는 조건이 주어졌다고 하자. 이때 연관/독립 상태가 3독립인 경우의 표현형 가짓수는 12가지 이상이어야 하므로, (가)는 A= a 이고, (다)는 D = d 가 되어야 한다는 것을 알 수 있다.”
자손에서 나타날 수 있는 (가)의 표현형은 2가지 또는 3가지, (나)의 표현형은 2가지, (다)의 표현형은 1가지 또는 2가지입니다. 연관/독립 상태가 2연관 1독립(2개가 연관, 1개가 독립)일 때 표현형 가짓수가 12가지이므로, 3독립(셋 다 독립)으로 가정했을 때의 표현형 가짓수는 12가지 이상이 나와야 합니다. 3독립일 때의 표현형 가짓수가 예를 들어 8가지라면, 2연관 1독립일 때의 표현형 가짓수는 8가지 이하로 나와야 합니다.
그래서 3독립일 때의 표현형 가짓수를 12가지 이상으로 만들려면, 자손에서 나타날 수 있는 (가)의 표현형은 3가지, (다)의 표현형은 2가지가 되도록 만들어야 합니다. 즉 (가)와 (다)는 모두 중간 유전임을 알 수 있습니다.
이제 연습을 한 번 해 보겠습니다.
ex) 사람의 상염색체 유전 형질 (가) A = a(7번 염색체에 존재), (나) B > b or B = b(7번, 8번, 9번 중 하나의 염색체에 존재), (다) D > d(8번 염색체에 존재) 가 있다.
아빠의 유전자형은 AaBBdd이고, 엄마의 유전자형은 AaB_D_이다. 자손에게서 나타날 수 있는 표현형이 최대 8가지일 때, 엄마의 유전자형과 (나)의 우열 관계를 구하시오.
(나)가 존재하는 염색체에 따라 연관/독립 상태는 2연관 1독립 또는 3독립입니다. 눈치가 빠르신 분들은 자손에게서 나타날 수 있는 (가)의 표현형이 3가지이니, (가)가 2연관 쪽에 있는 2연관 1독립이 정답이라는 것을 눈치챌 수 있으실 겁니다.
그런데 위 내용을 떠나서, 자손에서 나타날 수 있는 표현형이 8가지가 되려면, 3독립일 때의 표현형 가짓수는 8가지 이상이어야 합니다. 자손의 (나) 또는 (다)의 표현형이 1가지가 나온다면 문제 조건상 자손 표현형 가짓수가 8가지 이상이 나오는 것은 불가능하므로, 엄마는 BbDd이고, (나)는 B = b 라는 것을 알 수 있습니다.
기출 문제에도 이를 적용할 수 있습니다.
이 문제는 (가)~(다)의 연관/독립 상태가 3연관인지, 2연관 1독립인지, 3독립인지 추론해야 합니다. 이 문제와 같은 ‘연관/독립 상태 추론’ 문제는 교육과정 개정 이후로 한 번도 출제된 적이 없고, 앞으로도 나올 가능성은 높지는 않다고 생각합니다. 혹시 모르니 대비는 해야 하겠지만요. 오늘 제가 설명드리는 내용은 ‘연관/독립 상태 추론’문제에서 자주 활용되는 내용입니다. 그래서 중요도가 조금 떨어진다고 볼 수 있습니다. 물론 다른 문제에서도 적용은 가능하나, 활용되는 경우가 많지는 않습니다.
문제 조건을 해석해보겠습니다. 문제의 연관/독립 상태는 몰라도, 자손에게서 나타날 수 있는 표현형이 8가지이므로, 3독립일 때의 표현형 가짓수는 8가지 이상이 되어야 합니다. 이를 통해 (나)가 중간 유전이고, 나머지가 완전 우성 유전이 되어야 한다는 것을 빠르게 알 수 있습니다. (나)가 완전 우성 유전이라면 3독립에서도 자손 표현형 가짓수가 최대 6가지만 나올 수 있기 때문입니다. 이후 풀이 과정은 생략하겠습니다.
‘독립 표현형 가짓수 ≥ 연관 표현형 가짓수’는 제가 소개하는 4개의 잡스킬 중 가장 덜 중요하고, 범용성도 떨어지기는 합니다. 다만 내용이 어렵지는 않고, 잘 공부해두시면 나중에 오늘 예시로 든 것과 비슷한 스타일의 문제를 풀 때 약간의 힌트가 될 수 있으니 알아두시면 좋을 것 같습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금 림잇 듣는중 림잇 듣고 김종익 잘노는기출&현돌 기시감 이거 하려고 하는데 둘다...
-
똥메타임? 1
우웩!!
-
카가 성이고 리나가 이름이겠지
-
(나)부분은 장수생들이 현장에서 봤으면 여러 생각이 들었을듯... 공동체에 대한...
-
뭔 소설에 약이 이렇게 많이 나와... 클로로마이신... 뎀피졸...
-
요즘 평균적으로 공대를 쉬운확통사탐으로 많이 가나요 아니면 그래도 가산점 받는...
-
케인님한테 고소먹나요? 민주누님한테 고소먹나요?
-
하 하 하 1
일류니까 크게웃어
-
내 뱃속에서 키우고 낳은거잖아
-
초고속충전할려면 2
충전케이블도 아무거나 쓰면 안되나요? 초고속이 되는 게 따로 있는건가요
-
확통 3등급이 목푠데 등급컷보니 70점정도는 맞아야 하겠더라구요 6~7문제 안풀고...
-
서방님들 여르비왓어염 14
뿌우
-
하나도 모르에네..누가 누군거제..
-
감떨어지는 소리 들린다
-
경제학. 2
90점인가 제발 그대로 나와다오 에쁠 제발 에쁠
-
독서-피램 문학-김상훈 언매-김동욱 ebs-김승리 어쩌다보니 분야별로 찍먹을..
-
연필통 말구 딴걸루요 이감 시즌1, 인강민철, 데일리유대종중 생각중입니다 연필통은...
-
다 탈릅햇나.. 8
어피니티는 간 거 같네요.. 좋은 친구였는데 원조 심심한은 어디감요?
-
하..
-
책값 너무 비쌈 8
중고책 살까 그냥
-
젼나 음흉해보이잖아 여따가 “으흐흐”
-
월화수목금 2시간 근무 토일 6시간 근무 물리적으로는 가능세계범위?
-
언매 도움요청… 3
나 혼자서 밥을 먹는다. 나 혼자 밥을 먹는다. 첫번째 문장에서 혼자서가...
-
공통은 좋은데 미적(10강까지 들음)은 실전개념도 없고 단순한 풀이만 하는 것...
-
완강을 위해 0
뽜이팅
-
만넌필 케이스 둘중에 뭐가 이쁨? 실링 밀랍 장식 자체는 1인데 전체적인 감은 2라 고민되네..
-
그냥 이과가 생윤하는게 이런 느낌일까? 온몸으로 좆노잼이라고 몸이 가부함...
-
삼반수 0
화작미적생1지1 24수능 54245 25수능 23222 이렇게 받았는데 한번 더 해볼만할까요..?
-
3덮때 노베라 3점 맞고 한 달동안 4덮 자이스토리+개념 한 달 공부했어요 진도...
-
배달이 뒤지게 안 온다 ㅅㅂ
-
나 협찬받음 3
요즘 방구를 홍보중임 공공장소에서 마구 뀜
-
강e분? 16
내가 다 이겨
-
평소에 수능 교육청 다 1-2등급 기본으로 떴는데 시간부족으로 도표 3문제...
-
지방대 특수교육과 다니는 사람이 요즘 수능 너무 쉽다길래 대체 특수교육과 공부가...
-
못참겠다 0
-
똥 마려운데 5
어떡해
-
친구관계 비롯해서 다 말해드릴 수 있음
-
내가 그렇게 못가르치나
-
과외 학생 입장에선 한 번에 한 과외 선생님이랑만 상담 가능한가요?
-
고등학교 재입학 1
검정고시 합격했어도 재입학 가능하다는거같은데 실제로 그렇게하신분 계시나요?
-
잘지내시나요 저는이학교에서 전교한자리수를유지중이에요 중앙대원서를안쓸거같습니다…...
-
최근들어서 느끼는건데 원래 앞에선 안그러면서 등에 칼꼽는사람들이 최악이라고...
-
과외 학생 입장에서요
-
"4월 월급 왜 이래?" 직장인 1030만명 깜짝…건보료 20만원 더 낸다 3
임금 인상·성과급 지급 등으로 지난해 보수가 오른 직장인 1030만명이 이달...
-
국주티콘보유중
-
진짜 처음 들어보는 대학 사범대 다니는 사람이 요즘 대학가기도 너무 쉽고 수능도...
-
외적너무으악 1
외적그만할래
오 이 조건 활용해서 문제 여러번 만들었었는데 의외로 학생들이 잘 인지 못하는 부분이더라구요
오랜만에 뵙습니다. 댓글 남겨주셔서 감사합니다 ㅎㅎ 사실 의식하고 보지 않으면 눈치채기 쉽지 않은 것 같아요..