-
현역 공군,카투사,의무병으로 다녀와라... 공보의도 최근몇년동안 급격히 qol...
-
AC/DC highway to hell
-
귀여웡 * 이상성애자 아님
-
첫날은 술게임 별로안하나요 핵인싸끼리 술게임하던데 오늘 술게임 뒤지게한다고하긴하던데
-
https://www.youtube.com/watch?v=oNb00UBeOro&ab_...
-
겨울 알차게 보내셨나요 14
벌써 2월도 끝났네요
-
적분 이용하지 않고 부등식 중간에 있는 함수가 2차함수이므로 이차함수와 일차함수의...
-
기본 개념인가요?? 아님 스킬인가요?? 트레드밀 안 듣고 러쉬 할만해요???
-
다시 말하지만 난이도 올라갈수록 스킬 편법 안통함 12
작년 6월 불영어 끝나고 평가원장 인터뷰임 ㅋㅋㅋ 나는 스킬이나 요령 안통하게 낼꺼라고
-
올1컷맞고 서성한도 못쓰는 해도 많았고 뭐 당연히 쉬우니까지만 어떤 시험지도 96...
-
여러 가지 교훈이 담겨있음
-
재수 수학 1
이번 수능 미적분 88점 나왔는데 시발점부터 다시 들을까요 아니면 뉴런부터 들을까요?
-
얼버기 3
-
이 문제 나는 다 풀고 5번이라 생각하고 집에갔는데 답 나오기 전까지 오르비에서...
-
수학통합후 보다 훨씬 정시도 쉽지않나? 아닌가
-
아무쪼록 행운을 빌어주시길 :) 공군 병 848기 드림.
-
시작이구나 1
씨이발가보자..
-
진짜 ㅋㅋㅋㅋㅋ
-
설대25학번분들 1
저만 모바일 학생증 안 만들어짐?
-
어떡함?
-
얼부기 4
-
ㅅㅂ 뭐가 맞는건지 모르겠음 내가 너무 나약한거 같다
-
같은 조 재학생 선배님이 사진 원본화질로 보내달라고 하는데 아무도 원본으로 안 보냄 ㅡㅡ
-
아직안잤는데 1
거실에서 엄마랑 동생이랑 일어나서 얘기중인듯 으아아
-
이거 이렇게 하는 거 맞음?? 아님 잘못된 부분이나 보충해야할 거 있나?
-
꿈에서. 두 대학 추가모집에 모두 합격하고 어딜 갈지 고민하고있었네요 왜냐면 나는...
-
군수생 달린다 4
고고고곡
-
광주 부산 0
광주 사는데 부산쪽으로 대학교 가는 거 어떻게 생각함?? 광주에 놀게 너무 없고...
-
언제 이렇게 살아보냐 죽기전에 한번쯤은 청춘을 불태워봐야제
-
오노추 2
으흐흐흐
-
잇올가기.. 인생이 너무 비참하네 성불할테야
-
얼버기 6
모닝
-
D-258 2
다음주부터 독재 가니깐 스카 가는 마지막날.
-
아침이라 머리 아프다고 넘기겠지? 오후까지 존버 타야겠다
-
탄핵되고 ㅁㅈ당에서 대통령나오면 의대 감원되나요?
-
하루 동안 물리학2 1단원 정도만 풀었습니다
-
국어 수학 못할수록 사탐런의 효용이 크죠?
-
아침은 1
롤체 5인큐
-
문학급으로 연계체감 되나요?
-
일단 전 물1지1이었고 이제 군필 5수가 되어가는 사람입니다. 지1은 계속...
-
얼버기 3
사실 밤샘
-
재수생인데 주변 친구들 반절은 독재가고 잘하는 애들은 다 시대 재종갔는데 저는 너무...
-
푸는데 ㅈㄴ 오래걸림 ㅋㅋ
-
예전엔 이렇지 않았던것 같은데.....
-
자기야 7
잘자
-
뭔가 정리가 안되는 느낌 자체교재라도 만들어볼까
-
힘내라 샤미코
-
기차지나간당 4
부지런행
근데 0.9999999999.....가 실수인가? 1로 수렴하는 상태(리미트를 벗기지 않은)아닌가?
수학 고수분들 도움좀...
나두 유튜브 쇼츠 본 기억으로 한 거라 잘 모르게씀... 근데 애초 1ㄹ로 수렴이라는 게 1이랑 똑같은 말 아님?

흠....아직 계산되지 않은 상태이니 무한대같은 느낌으로 봐야하지 않나https://youtube.com/shorts/fwYerxS8VY0?si=7aLBw4tQzFSxX9E2
이거 본 기억으로 했음...

아 이 분 ㅋㅋㅋ영상보니 결론이 실수의 조밀성 때문에
0.999...과 1사이 들어가는 수가 없으므로 실수가 아닌 것 이라고 설명하는것 같네요..
제가 잘 이해한것인진 잘 모르겠습니다.
수렴하는 상태의 수 같은 건 없습니다
0.999•••는 그냥 1입니다
이 문제가 저렇게까지 해야 풀리나여..?
그냥 임의의 f(x) 잡고 풀면 풀리긴 하는 거 같은데
뭔가 좀 더 엄밀한 풀이를 알고 싶어서요
실수의 완비성을 굳이 왜 끌고 와야하는지는 잘 모르겠습니다. 그리고 무한 소수는 결정되지 않은 상태가 아니라 이미 그 자체로 “수(number)"입니다. 0.999••• 같은 경우도 1이라는 수의 또 다른 표현으로 취급해야 마땅합니다.
그냥 별 거 안 해도 됩니다.
함수 h의 point a에서의 value를 g(a+)xg(a+2+)로 이해하고 h를 construct 하면 됩니다. 이중극한을 씌울 생각을 하는 것보다 h에 대한 이미지를 먼저 잡아놓는 게 편합니다. 애초에 f가 임의의 다항함수인지라 우극한이 존재하지 않을 일은 없고.. (교육과정에서 다루는 것부터가 아니긴 하지만) 심지어는 그냥 직선으로 박아놓고 풀어도 무방합니다.
내가 한 거 맞는 거 같음
그런데 다만 이해 안 가는 부분 두 가지가,
1. 0+가 실수가 아닌 건 알겠는데 정확히 뭔지 모르겠음
수가 아니라 현상? 기호? 뭐 그런 걸로 받아들여야 함?
2. 그리고 수렴값으로 가져왔다는 표현도 이해 못 하겠음
요거
나는 머 걍 일개 대학생이니..알아서 걸러들으삼
1. 걍 허수처럼 실수와 다른 수체계로
받아들여도 될거같음.
실수와는 연산 성질이 다른 ㅇㅇ
lim 안에서만 존재할 수 있고
밖에서는 존재할 수 없음
진짜 너무 궁금하면 엡실론 델타 논법을 공부해보셈..절대 권장은 모타겟슴
2.
1에서 말한 것처럼
lim 안에서만 존재할 수 있는 수체계를
밖으로 가져올 수 없다
요런 말임

ㄱㅅㄱㅅ