수1 특강 -(1, 수열의 귀납적 정의)
게시글 주소: https://orbi.kr/00072257873
1. 이론
문제 풀이의 도입이 안 된다면 실험과 관찰(나열)을 통해 문제의 규칙을 찾아봅시다.
또한 수열의 진행방식이 결정된 상태라면, 역으로도 진행할 수 있음을 기억합시다.
그리고 많은 수열 문제에서 케이스를 정확히 잘 분류함이 중요합니다.
바로 예제로 넘어갈게요
2. 예제
수능수학에선 이미 결정된게 뭔지를 빠르게 찾아내는 능력이 꽤나 중요합니다.
a_n이라는 수열을 보면, 수열이 귀납적으로 3개의 연속한 항의 관계가 결정되었고,
2개의 항 또한 결정되었으니 a_n이라는 수열은 결정되있음을 알 수 있습니다.(즉, 전체를 알고 있음)
a_n이 어떤 수열인지 알기위해 조금 나열을 해보죠.
1,1,0,-1,1,0,-1,1,0,-1,..<- 수열의 규칙을 금방 발견할 수 있네요. (3 주기)
아는걸 정리해보자면, b_20, a_n이라는 수열 그리고, a_n과 b_n을 알고 있습니다. (b_n이 결정되었다.)
마무리는 다음과 같은 교대급수 식을 계산해주면 됩니다.
이 때, a_n은 3주기의 수열, (-1)^n은 2주기의 수열이므로 그 곱이 6주기(최소공배수)의 수열이 됨을 알 수 있습니다.
따라서 특이항인 a_1을 배재해준 뒤로, 6개씩 묶어서 계산해주면 되겠네요.
b_20을 제시함으로써, a_n을 (19-1)=18개로 6개씩 묶게 좋게 줬음을 알 수 있네요.
a_n이 결정되지 않았음을 알 수 있네요. (최소 2개의 항이 결정되야함)
아는 항이 a_7이니 여기서부터 조금 진행을 해봅시다
40, 40+a_6, 80+a_6 or (40+a_6)/3. (a_6에 따라서, 진행 방법이 바뀜을 알 수 있다.)
즉, a_6를 3으로 나눈 나머지에 따라서, 수열을 관찰해주면 되겠습니다. (적절한 케이스 분류)
(a_6를 3으로 나눈 나머지가 0,1,2인 경우)
Omitted.
3. Exercise
직접 연습해봅시다. (아마도 난이도 순서입니다.(1번이 쉬움))
1번 문제
2번 문제
3번 문제 (참고, https://orbi.kr/00071614605)
4번 문제 (참고, https://orbi.kr/00071592948)
5번 문제 (어렵습니다, 재미로 풀어보세요.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
귀신꿈 꿧음 1
귀신이 꿈에 나와서 나랑 같이 으흐흐 햇음
-
현실에서 만들긴 어럽지만 오르비같은 인터넷에선 저처럼 다양한 가상의 페르소나를...
-
몰입이 하고 싶어여
-
매력이없는거같음 다 나 싫어하는거같음ㄹㅇ..
-
제발 참아줘
-
국어의안정화 6
문과황의 조건
-
옯스타 12
맞팔해요 orbrora7
-
수업 들어보면 별거 업ㄱ는 문젠데 처음 풀때는 무슨 중학생이 와도 할거같은 풀이밖에 안나옴
-
그만 기다리기
-
꼴리는 대로 낸 문제 나보다 똑똑한 사람들 모여서 출제의도 토론을 한다고
-
유교 사상가들 구분 해야되나요? 그냥 유교로 놓고 풀면 안되나여 이때까지 그렇게...
-
그래도수능은절대 4
안칠거임 그전에뒤질가능성이매우높음..
-
다시 달려보자..
-
먼가 하는짓은 부남충같은데 공부도 못하는 버전인 애들만 모아둔 느낌
-
그런 행사가 9월에 있었나
-
엘클 개재밌네 1
바르샤 ㄴㅇㅅ~~~!!
-
기습질받 1
선넘질받
-
ㅈ르투아 사모라상 컷
-
연애 ㅎㅎ 5
할틈이없는인생 ㅅㅂ
-
작년9평때느꼈음
-
안 자 3
씨발
-
높2에서 낮1 진동하는 쪽인데 준킬러랑 킬러n제 같은거 풀때 어느정도 시간으로...
-
초록노프사
-
맞음 인생도망한거맞고 만만한거도맞음..
-
이런것도 그냥 뭔가 손으로 쓰려고 하면 안보이는디 걍 머리로 생각하다보면 닮음이라...
-
사문 개념 전체 5시간 컷 이게 섹스가 아니면 뭐임 윤씨는 40시간 가까이 하는걸...
-
수학 실모 추천 1
수학 실모 추천 해주세요
-
ㅅㅂ 그게 말이되냐고
-
53점인가 받아봄
-
6모 대비 히든카이스 모의고사 2회분 출시 후 광클이벤 + 칸타타 vs 세계 칸타타vs시대갤로 홍보
-
어케 풀어여
-
하는 식으로 엮였는데 딱히 기분이 안 나쁘면 호감일까요 …아니야그럴리가없는데
-
뭘보고 팔해주시는걸까
-
과탐 가산점이랑 미적분/기하 가산점 없는 학교 대충 어디어디 있는지 알려주시면 감사하겠습니다!
-
외대 32111 5
32111 언매미적생윤윤사 낮3 낮2 사탐 둘다 높1인데 외대 LD 됩니까아 ㅠㅠ
-
작년에 이말 ㅈㄴ읏겼음
-
전 4규공통답컨하고 미적쎈발점 이해안되도넘어가기 하고 있었음ㅋㅋ
-
올해대학갈사람들은당연히빼고계산하는거지.. 난일단못감
-
ㅈㄱㄴ
-
렌즈끼고 알 없는 안경 끼니까 친구가 알 없는거 바로 알아보던데 ㅋㅋㅋ 티나나
-
오르비최저학력은나구나 21
ㄹㅇ..
-
멀 어떡해 그냥 발뺌하면되는거지
-
흠
-
잘자 아기들아 3
엉아 자러 간다잉
-
다시금 떠올리게되네
-
우울하다 1
지금 건대 높공 재학 중인데 반수 관련해서 부모님이랑 의견이 안 맞았어서......
-
사문 자작 3
-
진사람 삭발하고 인증하기 ㅇㅇ
오잉? 정말 유익해요
읽어보겠습니다
좋은 글 감사합니다

이런글은 선추후독이 맞긴해
감삼당 자기전 풀고 잘게ㅇ ㅛ5번은 어떤문제인가요..? 논술?
경시에요
아하
사실 예제 풀이가 별거 없어서 연습문제가 주인 ㅋㅋ..

얘는 뻘글 지르다가 이런 유익글 써내는 거 보면 ㄹㅇ 신기함내 최애 지로함이 글쓰면 무슨글이든 공부하다 후다닥
개추야
결정된것을찾기
또는
아는 것/ 모르는 것의 구분
ㅇㅈ합니닷
마지막문제 풀고있는데 풀이가 한장 넘어가네요 간결하게 풀리나요?
+뉴턴항등식 쓰는거맞나요 ㅠ.ㅠ
풀이 꽤 길긴해요,
풀이가 많을 듯한데 제가 아는 풀이에서는 안 썼던 것 같아요.
a_n -1을 b_n으로 정의해서 상수 없애주고
적절한 kb_n+1을 양변에서 빼 준 후등비수열 꼴로 만들어서 다 더하는 방식으로 했는데 너무 무식하게 풀었는지 으악이네요
뭔가 이렇기 한 다음에 b_2023이 제곱수다!라는 정보를 찾으면 제곱합조건은 맥거핀처럼 날아가지 않을까~ 하고 달린 건데
잠정적결론 자체가 틀렸나봐요
원래 풀이는 a_n=(f_2n)^2+(2f_(2n-1))^2임을 증명하는 거에요. (f는 피보나치 수열)
아마 이게 Official Solution일꺼에요.

혹시 생성함수를 쓰는건가욧제가 피보나치 관련해서 아는게 딱 이정도라 ㅠㅠ 아니면 자려구요

귀납법 쓰는거에요,식을 푸는 과정에서 (f_n)^2-3(f_n)(f_(n-2))+(f_(n-2))^2=(-1)^n이라는 유명한 항등식 하나가 필요한데, 지금보니 유도하려면 나오겠지만, 이 항등식을 모르고 풀기엔 되게 어려울 거 같네요.
그럼 두개의 항이 결정되면 a_n이 결정된걸로 알수있는건가요?