수학황분들 이 문제 어떻게 풀어요?
게시글 주소: https://orbi.kr/00072194259

아무리 생각해봐도 경우의 수가 무수히 많아서 모순이 있는거 같은데 정확히 왜 그런지 모르겠는데 이 문제 해설해주실분..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
07현여기임 문제푸는데50년정도걸림 영어지문 하르예 딱 8개만 풀고 분석하려는데...
-
어카지 6
수업하다 학생 사라짐 카톡에 1이 안사라진다
-
배달을 시켜먹으면 오르비에 치킨한마리를 쏘겠습니다.
-
드릴 해설 1
드릴 인강 꼭 봐야함? ㅈㄴ 오래걸리는데
-
할수있어:)
-
옷핏 죽일텐데 학기 시작하면 운동 하야지
-
왜케 족간지인거임
-
강기분 어려워요 0
강기본 다끝내고 강기분2주차하고있는데 아직도 감을 못잡겠어요. 지문읽으면서 초반에는...
-
열심히 하는 애들은 아쉬운 결과가 나와도 본인의 최선이었기 때문에 그냥 다니거나...
-
아닌가 이미 깨졋나 최근에 암거나 집히는대로 너무 많이 퍼먹음
-
[소개 및 성적인증] https://orbi.kr/00071877183 안녕하세요!...
-
방가서 할것 3
1 무한원점 2 베르테르 60번 3 미적분학2
-
안녕하세요, 생명과학 I 과목을 가르치는 하드워커입니다. ‘여러 가지 유전’...
-
실제로 대학가면 저렇게 fm 할 일이 있나요?!
-
매월승리 2
매월승리 판매 종료 됐던데 따로 다시 판매 하나요? 안하면 그냥 간쓸개 풀 것 같습니다
-
스칸데 3
옆자리인강듣는 소리가 이어폰을 꿰뚫고 다들리네 ㅅㅂ
-
"기출 분석하지 마라 3회독 이상은 낭비다 N제 실모 할거 많으니까 기출 오래붙들...
-
하지마시라니 6
https://www.youtube.com/@You-nova 계속 하시네
-
드릴 난이도순 0
근 2달동안 3,4,5 공통 미적 전문항 다풀어봤는데 3>>5>>>>4 느낌이네요...
-
251128질문 5
g(t) 구한다음에 그거 미분해서 복잡한거 소거되고 다시 적분했는데 이렇게 푸는게...
-
공부하는데 자꾸 중간에 울컥하고 눈물이 나서 집중이 힘듦 ㅅㅂ 대학좀가자
-
맨날 서울대는 어쩌고 해외 명문대는 어쩌고 하는 애들은 뭐 알고 비교하는 거임?...
-
길막을 하고 있네 무슨 에휴 이러니까
-
헤어진지 1년반 넘은 전남친 미련도 있고 근황도 궁금한데 맞팔중이라 스토리 서로 다...
-
재수때국어를잘볼수밖에없는환경이었다 공부끝나면별보면서시한편읊조리고 똥싸면서고전시가읽고...
-
뒤지게 춥네 2
3월에도 패딩은 입어야겠어
-
저녁 ㅇㅈ 6
이힣
-
심심한아~~~ 7
공부해라
-
공대 간 사람들은 학생 때부터 가고 싶은데가 있었음? 12
대학 말고 학과 그냥 성적 따라서 가지 않음? 컴공 같은 거 아닌 이상에야 ㄱ학생...
-
ㅂㅂ
-
오옹 3
뭉탱이
-
생긴게
-
반전에 대해 배워봅시다ㅏ.1. Cline. 일반화된 원이라고도 부르고, 원과 직선을...
-
렉카들 앞으로는 좀 사리려나
-
살면서 번호 따여본적없는데 클럽 가니 2번 따임
-
공부 할 체력이 안됨 19
2시간 반이 하루 최대치다 더 이상은 하다가 쓰러짐
-
애교를 부려야겠다~~! 누나들 아잉아잉 ♡♡ 안냐세여~~!!
-
맘에 들었으면 해 모자란 내 마지막 정성이야 웃자 자꾸 왜울어 정말 음식다식겠어 그만울고한입만들어
-
무물보 5
-
작년 수학 10모 10
실모랑 하프모같은 컨텐츠 많이 풀어봤고 고2때 학평 다 96~100 원점수 고정으로...
-
많이 써놓던데
-
올해 뉴런 0
작년에 비해 분량이 엄청 늘어났던데 이유가 뭔가요?? 시발점처럼 개념도 설명하셔서 늘어난건가요?
-
중세국어 시기에는 '얼굴'이 'face'가 아니라 'appearance'의 의미로 쓰였답니다 2
形 얼굴 혀ᇰ 훈몽자회(1527) 模 얼굴 모 훈몽자회(1527) 體 얼굴 톄...
-
도와줘ㅓ 0
작년에 강민철 풀커리 타고 2등급 나옴 근데 문학은 다 맞고 독서는 꽤많이 틀ㄹㅣㅁ...
-
경희 한의원 가천 한의원 동국 한의원 원광 한의원 이런게 의미있나
-
국어 큰일났다 6
24학년도 엑셀 비문학 어려운 거 맞죠? 아닌가..
(0,0)에서 기울기 음수인 변곡점인듯
아 t=-1이구나 ㅂㅅ
흠냐 모든 f(3)이네 문제 쓰레기같네 풀기싫다
그렇네 케이스 무수히 많은거같은데
문제 퀼이 좀 이상하긴 한듯.. t=-1에서 접선이 x축일때랑 x=-1에서 변곡점가지고 기울기 음수라고 하면 답이 억지로 나오긴 하는데 경우의 수가 무수히 많이 나와서
경우의 수가 왜 무수히 많다고 생각하시나요??
답은 2번 나오는거 같은데
예를 들어서 f(x)=-5x^3+10 일때 경우를 생각해보면 변곡점이 x=0이고 t=-1에서 접선이 기울기가 음수면서 (0,0)을 지나서 조건을 만족하는데 이 f(x)말고도 최고차항의 계수를 조금 변화시키고 그때 상수값도 변경시켜서 t=-1에서의 접선이 원점을 지나게 하면 또 다른 f(x)가 생기고 이렇게 조건을 만족하는 f(x)가 무한하다고 생각해서 모순이라고 생각했는데 제 생각이 확실히 맞는지 모르겠어서 질문했습니다.
혹시 -1일때 최고차 양수인 변곡점인경우+ 0,0 지나는겅우랑,최고차항 음수일때 -1에서의 접선 인데 0.0을 지나는 경우 맞나요?
최고차항의 계수가 양수일때 x=-1에서 접해서 접선의 방정식이 x축인 경우도 있는거 같아요
근데 제가 말한거의 후자의경우가 계산이 안돼요
전자경우랑 작성자님이 말한경우 합해야 155나오긴하는데..
그래서 모순이 있는거 같다고 질문한거였습니다.. 경우의 수가 무수히 많은거 같아서
혹시 어디문제에여?