Miquel Point의 존재성만을 이용한 매우 멋진 증명.
게시글 주소: https://orbi.kr/00072133137
BC=DA이고, BC와 DA가 평행하지 않은 볼록사각형 ABCD가 있다.
선분 BC와 DA위에 가변점 E와 F가 각각, BE=DF를 만족하며 움직인다.
AC와 BD의 교점을 P, BD와 EF의 교점을 Q, EF와 AC의 교점을 R이라 할 때,
PQR의 외접원은 항상 P가 아닌 어떤 점을 지남을 증명하여라
순수 논증적인 풀이)
M을 완전사변형 ADBC의 Miquel Point라 하자. (이 때 M은 당연히 고정점이다.)
그러면, M은 FACE의 Miquel Point임을 알 수 잇다. (나선닮음의 중심이므로 비율 생각)
R을 EF와 AC의 교점이라 하자.
그럼 ARMF는 공원점이다.
M이 (ARF), (DFQ) 위에 있으므로, M은 또한, AFQP의 Miquel Point이다.
따라서, M은 항상, (PQR) 위에 있다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1. 나는 평생동안(초등학생~현재) 연애를 해 본 적이 없다 2. 나는 한 번도...
-
특히 좋아하는 메뉴 나오면 막 두세번씩 먹음 단체급식 느낌의 약간 B급 요리들...
-
님들 나 순결임 6
순결지키기 ㅈㄴ 쉽네 본인은 심지어 연애관련도 순결임 레굴루스가 좋아하겠노 ㅋㅋㅋㅋㅋ
-
비슷한가요?
-
반갑습니다 8
-
말하면 이미지타격이 상당해서 안할래
-
마음같아선 다 보고 싶은데 시간이 너무 아까움… 3-4따리라면 다 보는 게 맞나.?
-
풀이 까지는 아니더라도 사고과정 알려주면 5000덕 12
수학황들의 사고과정을 앞으로 덕코로 사겠음
-
흐음
-
프본이에요 8
반가워요
-
다들 재수할 때 운동 11
보통 언제 얼마정도 하셧음???
-
명문대 의치한약수 .. 옯평 개높아서 벽을 느끼고 공부하러 가겠읍니다..
-
못푸는 문제는 없는데 처리속도가ㅜ딸려서 시간안에 다 못풀어
-
슬슬 5
닉변할 때가 온거 가튼데
-
정겹고 좋네요~
-
라면 4
하루에 두개 먹는 건 에바겠지 아까 오후에 하나 먹었는데
-
팔로잉 목록에 왜 안보이지
-
2차 얼버잠 2
이젠 진짜 ㅃㅃ
-
제대학전부주작이에요
줠라
어렵내
진짜
나 이거 거의 2년전에 본건데 보고 감동먹어서 도저히 내 머리를 떠나질 않음