역함수 질문 (해결됨뇨)
게시글 주소: https://orbi.kr/00072090145
역함수는 그래프가 증가 혹은 감소할때만 존재 가능하다고 수하에서 배운것 같은데 이차함수나 판별식이 0 초과인 삼차함수는 어떻게 증가 또는 감소만 하지 않는데 역함수가 존재하나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
차이점은 넷상은 산화당한팀06오르비언을 둘째달에 보니까 3
그담부터 순화한 5번은 하고 돌려서 하는듯
-
전 ‘그건 나라도 ~하겠다.’ 이정도가 최대인데
-
이차곡선 슥삭해야지
-
현실이 없고 넷인생 넷친구만 있는데 어떡하나요?
-
극 내향인이라 롤보도 안킴
-
인터넷이 현실이고 현실이 인터넷이야
-
무지막지한거 가튼데
-
하..
-
개억까미친
-
뭐지…? 15
덕코 빠져나갔길래 뭔가 했는데 저 레어 머임..? 산적 없는데..? 아 뭐야 저거..
-
오..
-
깜짝 놀라는 것도 느리고 채팅도 느리고 생각도 느리고
-
미적 노잼임
-
부모님은 듣고싶은수업 다 들으라하시는데 이것도 성적으로 되돌려드리면 좋아하시나요?...
-
아이고빌런이되어있네 아이고
-
나를 위해 만들어진 프로그램..
-
옵만추하실분 4
옵붕이 만두먹이고 추노하기
-
신기하다는거물론 계속 잇는 사람들도 잇지만
-
아무나 구해요
-
야식머글까 8
잠안오니 배고프다
-
인스타에서 수학하는땅우랑 마이린 차단함
-
사실 전 차단 0
부러운사람 차단함
-
근데 무서울 뿐이야 2명 정도 있음
-
키 160대남자한테
-
머하지
-
미적분 질문 1
첫번째 사진에서 제가 쓴 식대로 연산 어디가 틀린건가요? 그리고 해설지 4번째...
-
찾아봐야지
-
1년햇는데 이정도면 적은건가
-
기묘하네
-
매주 서바이벌을 보는데 선생님이 하나틀린사람! 두개틀린사람! 이렇게 손 들어보라고...
-
그 전까진 일만 다니면서 죽은 듯이 살아야지
-
개구리 4
개굴개굴
-
은근 띠꺼운 임티 12
-
엠티가면무조건하겠지...
-
사탐은 솔직히 웬만하면 엔수할땐 안바꾸는게 나은거같음 아무리 안맞아도 엔수하면 달라짐
-
세지 먼가 끌리는데
-
독서의 즐거움 초본 2025.02.21.
-
컨텐츠 많나요
-
하체 무리하다가 토할것같아서 잠시 앉을라했는데 몸에 힘 다 풀리면서 앞 까매짐...
-
술게임 9
개어렵네 하…
-
위에서부터 가족끼리 먹은 폴드포크랑 텍사스바베큐? 수학여행 전날 친구들이랑 먹은...
-
비록 수능에선 망햇지만 삼수하지만 그냥 현강도 재밌게 다녔고 공부하는거 자체가...
-
네 이건 진심입니다
-
최고의 휴식
-
경제 사문.. 6
츄릅.. 맛봐볼까.. 롤체 마스터도 가야하는데..
-
하나라도 쟁취한 게 어디야~ 3칸 이겼으면 된 거지
-
80점을 받고싶 2
지는 않다
-
팀 경제 화이팅 2
화이팅
-
개강하고 나면 공강 생길때 바로 과방으로 가세요 그러면 거기 상주하는 과방...
-
하 또시작이노 하고 넘기지 않나 그냥
구간별로 쪼갰겠죠?
이런식으로 교점 구할때 그냥 y=x에 바로 대칭해서 교점 구하는데 이러면 안되는거 아닌가요?
경험상 역함수 존재라고 하기보단 그냥 y=x에 대칭이라고 생각하면 편함
뉴런에서 설명할때는 역함수라고 했다가 이런식으로 교점 구할때는 그냥 대칭으로 풀던데 그냥 역함수라는 거는 기억에서 지워버리면 되나요?
저런 문제 풀었었던거같은데 저도 저때 이해못하다가 역함수라는 개념보다는 y=x에 대칭이라고 생각하면 되는듯요... 역함수랑 대칭하는법은 똑같지만 역함수라는 단어를 안쓰는...???
문재 조건에서는 f⚫️f(x)=x라고 나오던데 이게 역함수 아닌가요?
그걸 y=x에 대칭이라구 하지않나요....??
아 맞다 저게 역함수 or y=x에 대한 대칭이었네요
감사합니다 정신줄 놨나보네요;;
사인함수 기준으로 이분의 파이보다 절댓값이 작다로 정의역, 치역 지정하면 단사 전사 만족합니디
코사인함수는 0부터 파아까지에요
삼각함수가 아니라 그냥 이차함수랑 삼차함수인대요?
님이 글에 삼각함수라 썼어요
아 죄송합니다 오타였네요 ㅠㅠ
합성해서 항등함수이면 단사 (일대일대응)이긴 합니다