님들 0/0꼴의 극한에서
게시글 주소: https://orbi.kr/00072049881
sinx tanx ln(1+x) e^x-1을 x로 바꿔서 계산해도 되나요?
어차피 쟤네들 다 분모에 x 있으면 수렴하기도 하고,
수학 좋아하는 친구한테 물어보니까 x=0에서 저 함수들을 근사하면 y=x와 그래프가 일치한다고 해가지고...
위의 설명과 같은 맥락으로 1-cosx는 1/2 x (x^2)로 바꿔도 되나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시대인재 vod 0
시대인재라이브 vod는 한번 사면 영구인가요?
-
이미지 적어주세요 18
있었으면 좋겠네요.
-
대성패스 공유하실 분~~ 제가 구매 했어요 저는 탐구만 듣습니당 쿠폰 두장 주는거...
-
쌩삼 2
현역정시 44224에서 재수 21232로 마무리했습니다 원서영역 망해서 3떨했는데...
-
자기전 6
맞팔구함
-
아아…
-
가산 집합 1
어지러워
-
내가 가지지 못한것에 대한 추구는 당연한거지만 그것들중 대부분이 태생부터...
-
필수과 4
정신건강의학과, 성형외과
-
70도 적은건 아닌데 뭔가 아쉽네
-
드레만 나오면 4
바러 드레이븐 1557나오는거 개웃기네
-
ㅇ여자친구 1
떨려오는 별빛반짝이는데넌어디를보고있는지
-
241122 6
최소원의 원리
-
하이 0
님들 잘지내냐
-
체대입시 0
체대입시로 재활치료학과 희망하는데 정말 취업이나 이런 미래 같은 게 막막할까요?...
-
저는 이제 고3이된 문과 입니다. 방학을 열심히 보내려했지만 결국 놀기만 하고...
-
여태까지 배성민 한완수만 해봄 작수 공3 미2 틀인데 바로 뉴런해도될까요 수분감은 할거임
-
부스럭 부스럭 6
-
BC=DA이고, BC와 DA가 평행하지 않은 볼록사각형 ABCD가 있다. 선분...
-
왜 나 없을때 그런거야..나도 궁금해 머한지
-
수학과 가면 보통 어떤 진로가 있죠..? 가는 이유가 있을 거 같은데 그 이유가 궁금함..
-
난 게임에서 쳐맞는게 더 개같던대
-
1년 버리고 갈만 함?
-
다 까먹어서 미치겠어
-
다이아켠왕 2
출동
-
문제 상황:제한역을 그대로 마주하고 정면돌파에 성공했을 때 둘 다 문만 관련이긴...
-
요즘은 헬스보다 0
복싱이나 주짓수 같은거 하고 싶음
-
진짜임근데
-
어제는 가슴삼두 14
-
나도 이미지 적어줘 32
포텐셜은 이미 어느정도 알아서..
-
응..
-
학벌은 더더욱 희미해지는 거 같음 예전엔 무조건 학교 간판! 이런 느낌이 지금보다...
-
패스 사려는데 내 상황에 맞는거 추천 좀 대성vs메가 1
언매 미적 영어 생명1 지구1 13131 이고 국어영어는 어문학과 2학년 다니는...
-
주뱃 골뱃 그 위에 군림하는 크로뱃이라는 사실
-
알빠노
-
가버럿네
-
합격증 받았는데 과별로 톡방 같은거 보통 초대해주지 않나요? 그거 어떻게 하면...
-
늦게 자지 말기 0
돌돌돌
-
ㅈㄱㄴ..
-
여러부운 2
그거 아시나요오??
-
심심해
-
으헤헤 3
쵹쵹 으흐흐흐흐ㅡ 팟팟크흐 끼이이ㅣㄱ 힣 퍼ㅓ아이이ㅔㅇ 푸우우우으ㅡㄱㄱㄱ
-
교수 55% 교사 45%
-
요즘 배우는거 4
팔문둔갑
-
자.살하고싶다 9
할 용기는 없긴 한데 카르마와 윤회가 정말 있으면 좋겠다 잘난놈들 너무많네 열등감만...
-
오르비에서 우울글 싸는 애들이랑은 비교할 수 없을정도로 진짜 광기가 느껴졌음
-
25수샤 쓰다가 망가져서 추천좀여
-
5시 취침이 몸에 베서 잠이안온다
이게 원래 테일러 급수 얘기이긴 한데
맞아요 그런 이름이었던 거 같네요
limx->0 sinx-tanx/x^3 같은 건 얘기가 달라지긴 하죠
아 그렇네요 어라
삼각함수를 다항식으로 근사하는 건 생각보다 큰 오류가 있습니다 ㅜㅜ
그렇네요 결국 노가다 뛰는 수밖에 없나....
근데 막 무지성 치환하려는건 아니고
덩어리가 좀 더러울 때 바꿔서 계산하려는 거였어요.
e^(xsinx)-1 이런거 e^x제곱 - 1로 바꿔서 계산하면 편해서요
수2 내용인 줄 알고 들어왔다가 깜짝 놀라서 뒤로가기 누른 통통이면 개추 ㅋㅋ
이거개추
캬캬캭
공부하세요
하는중
저것들이 곱으로만 연결되어있고, x가 0으로 가고있으면 가능
만양 저것들이 차, 합으로 연결되어있으면 인수 찾아내서 묶어내고 계수 계산해야해요
아 감사합니다
그런데 곱꼴과 합꼴의 차이가 발생하는 이유는 뭔가요?
차 꼴이면 0-0 꼴이니 진짜 0-0=0으로 처리하는게 불가능해요
분모나 분자에서 인수(x)가 약분 가능하려면 분모분자 각각 전체에서 동일한 인수가 곱해져있어야 가능한 점을 생각해시면 이해가 되실겁니다
선생님 차꼴이면 극한식이 부정형으로 나와서 x로 치환해서 계산하는 것이 불가능하다는 말씀이실까요?
네네 예를들어 a식-b식 꼴이면 a,b 각각을 치환해버리면 안된다는 거예요
감사합니다!
곱꼴이면 ㅇㅇ 빼기꼴이면 얘기가 달라짐
아하 감사합니다
ㅎㅇ 보공해
직각이네
sinx=x-x^3/6
cosx=1-x^2/2 (+x^4/24, 사실상 안나옴)
tanx=x+x^3/3
이렇게까지 외우고 빼기꼴에서는 적당히 써주면 되긴 해요
e^x=1+x+x^2/2인데 이건 그냥 일차항 이상을 쓸 일이 없고
당연히 삼각함수, 지수함수는 다항함수가 아니니까 저 뒤에 항이 더 있지만, 사차항 이상부터는 그 항들이 나올 상황을 만드는 것 자체가 어렵기 때문에 사실상 문제에 나올 일이 없어요
선생님 x가 0 근처일 때 sinx tanx 이런 애들이 y=x와 완전히 같진 않다는 말씀이신거죠?
그런데 sinx나 tanx가 x^3을 인수로 가지면
리미트 x가 0으로 갈 때 sinx/x=0으로 수렴해야 하는 것 아닐까요? 뒤에 상수항도 있는데 생략이 된건가요?
sinx=x-x^3/6+...이니까요
sinx/x는 (x-x^3/6)/x인 셈이고, 다항함수 극한으로 봐도 이건 1이겠죠
아 그렇네요 무한대/무한대 꼴이랑 헷갈렸나봐요 죄송해요 ㅠㅠ
그리고 y=x와 완전히 같지 않다는 게 맞아요
정확히 말해서, x=0 근처에서(사실 이 경우 실수 전체에서) sinx는 x-x^3/6+x^5/120...+(-1)^n * x^(2n+1)/(2n+1)!+...과 완전히 같아요
저건 그 사실을 근사적으로 나타낸 거에요
아하 감사합니다 되게 복잡한 내용이네요...
정리하면 곱 꼴에서는 sinx tanx <<<< 이런 애들 대신 x를 대입해도 되나,
합이나 차 꼴에서는 식을 적절히 변형하거나 선생님께서 알려주신 개략적인 식으로 직접 계산하는 방법이 있는거군요.
네, 정확해요