-
칼국수 먹고샆다 3
ㅠㅠ
-
ㅋㅋ현실은..
-
와퍼먹고싶다 13
ㅋㅋㅋ와퍼진짜맛잇는데감자튀김도같이먹고싶다.수학2개재미없다수학2를해야하는걸까수학2한문제...
-
가려야돼
-
과하게 남성성을 어필하시던 분이 있어서 무조건 남자일 줄 알았는데 프로필...
-
님들 단발 중단발 장발 13
저는 중단발이긴합니다.
-
반어법이 ㅁ
-
줫같은 밴픽은 시나리오에 없었지... 왜 -빅- 이새끼랑 코씨가 같은 밴픽에 있는거냐고..
-
지문싹읽고 문제 싹푸는?이러면 내용을 안까먹나요?문학처럼 푸는게...
-
되겠죠..? 25일에 어차피 학교 가야되는데 그날 가도 3월 전에 자퇴 처리...
-
클릭하면 바이러스 걸리나요?
-
여기에서 25학년도 수능준비했어요 궁금하신점 답변해 드릴게요
-
나 닉변하고 싶은데 덕코 빨리 모으는 방법좀요.. 15
이거 ㅂㄱ을 상대로 전체 도발 날린거 같아서 조금 쫄리는데
-
처녀의 반대기때문
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
ㅁ프ㅓ,ㅑㅏ찌ㅒㅖ >":?/;.마ㅡ,ㅑㅣoswjfdeu8 9rvc 14
jisrfdegktolup;9/'gijolp0;/srw8um9kjsimkgreflo;...
-
반동 심해서 에임 다 빗나간다....
-
어그로 좀 그만 끌어라 다들 그게 중요한 게 아니다 9
진짜 중요한 건 바로 말 안해도 알거라고 봄
-
이따구 밴픽 보고도 하하호호 우리는 즐거워요 하하호호 사실 젠지를 만나기...
-
ㅇㅈ 10
한번 더! 한번 더!
-
화가 나는 짤 5
-
문제가 올해 해결된다고 하면 대량 유급시킨다는 말이 있던데… 정상적으로 대학생활...
-
07년생이란 3
2007년에 태어낫다는 것
-
고민된당 우
-
딴동내앤 두부두루치기라는 음식이 없음?
-
ㅇㅈ 6
에헤이~
-
년도별로 되어있는거요 년도별로 쫙 되있는거 보고싶어서ㅜㅜ 혹시 아시는거 있으면...
-
달리기하면 우울한거 싹사라짐
-
ㅇㅈ 10
그런건 없어
-
ㅇㅈ하거 자러감 20
오늘도 늘 보던거
-
ㅇㅈ 6
-
아무런 뜻이 없소이다
-
과탐 가산 좀 크다는데 과2하기엔 반수라 시간부담이 클거같음 작수 과탐 ㅈ박기도 했고..
-
잘생긴 성인 남자 아이돌한테 수치심을 줘보고싶다 ㄹㅇ 도파민 폭발
-
저 몇살이예요? 2
만으로
-
근데 친구들이 다 술 안마시는 애들임
-
저 몇살같아 보임뇨 20
ㅇㅇ
-
아니 하연님 저 실수로 11
잡담알림 끈다는게 차단해버렸어요 차단 어떻게풀지
-
님들 저 몇 15
살같아ㅇ
-
오르비 잘자
-
큐브 칼럼 글 봤는데 카이스트 아니고 가톨릭대 의예과로 학적 변경하셨네..?
-
ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
다재무능합니다 6
그러슴ㅁ디ㅏ
-
화1 1학기 내신 선택자인 예비고2인데,, 정훈구t 고2 정답화학 듣다가 1단원...
-
변별도 관련해서 3
앞서 정답률이 낮으면 변별도가 낮다는 식으로 혼란이 생긴 감이 없지 않은데 0.4는...
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
공부시작 1
.
-
은테 달았다 12
드디어 똥테 탈출
-
너가 최고야! 2
>.<
헉,, 이게 아직 안 풀렷군
옆에 있는 놈한테 물어보면 안되겠죠?

이게 아직까지도 안 풀리고 있었네주어진 문제 풀이
1. 함수 g(x)의 도함수 g'(x) 구하기
주어진 함수 g(x)는 다음과 같습니다.
g(x) = (2xf(x)) / (x^2 - 1)
몫의 미분법을 이용하여 g'(x)를 구합니다.
g'(x) = [ (2f(x) + 2xf'(x))(x^2 - 1) - 2x(2xf(x)) ] / (x^2 - 1)^2
식을 정리하면,
g'(x) = [ 2f(x)(x^2 - 1) + 2xf'(x)(x^2 - 1) - 4x^2f(x) ] / (x^2 - 1)^2
g'(x) = [ 2f(x)(x^2 - 1 - 2x^2) + 2xf'(x)(x^2 - 1) ] / (x^2 - 1)^2
g'(x) = [ -2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) ] / (x^2 - 1)^2
2. 방정식 g'(x) + f''(x) = 0 분석
주어진 방정식은 다음과 같습니다.
g'(x) + f''(x) = 0
위에서 구한 g'(x)를 대입하면,
[ -2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) ] / (x^2 - 1)^2 + f''(x) = 0
양변에 (x^2 - 1)^2을 곱하면,
-2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) + f''(x)(x^2 - 1)^2 = 0
3. 중간값 정리 적용을 위한 함수 정의
새로운 함수 h(x)를 다음과 같이 정의합니다.
h(x) = -2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) + f''(x)(x^2 - 1)^2
그러면 주어진 방정식은 h(x) = 0이 됩니다.
4. h(x)의 특정 값 계산
* h(0) 계산: f(0) = 0이므로 h(0) = f''(0)(-1)^2 = f''(0) 입니다.
* h(x)의 극한값 계산: x가 1 또는 -1에 가까워질 때, (x^2 - 1) 항 때문에 h(x)는 발산합니다.
5. 중간값 정리 적용
* 경우 1: f''(0) = 0 인 경우
h(0) = 0 이므로 x=0은 방정식 h(x)=0의 해가 되어 실근이 존재합니다.
* 경우 2: f''(0) > 0 인 경우
h(0) > 0 이고, x가 1 또는 -1에 가까워질 때 h(x)는 음의 무한대로 발산합니다. 따라서 구간 (-1, 0)과 (0, 1)에서 중간값 정리에 의해 h(x) = 0인 실근이 각각 적어도 하나 존재합니다.
* 경우 3: f''(0) < 0 인 경우
h(0) < 0 이고, x가 1 또는 -1에 가까워질 때 h(x)는 양의 무한대로 발산합니다. 따라서 구간 (-1, 0)과 (0, 1)에서 중간값 정리에 의해 h(x) = 0인 실근이 각각 적어도 하나 존재합니다.
결론
어떤 경우든 열린 구간 (-1, 1)에서 방정식 g'(x) + f''(x) = 0의 실근이 존재합니다.
gpt검거
Gemini임
맞는 풀이라 보기 어려울 듯 합니다ㅠ
Ai이자식
아
x=0이 실근인가요