[n수에 대하여]-수익과 리스크
게시글 주소: https://orbi.kr/00071931052
안녕하세요.
긴 수험생활을 이제 마친 대학생입니다
아마 지금 쯤부터 n수에 대해 고민할 시기인것 같습니다.
n수해서 더 높은 대학을 가고 싶긴 하지만 실패하면 사회에서 뒤쳐진다는 불안감 사이에서 갈등이 생길겁니다.
또한 n수라는 선택이 인생에서 처음으로 마주하는 큰 결정이기에 신중하실겁니다.
제가 뭐 n수를 해라, 하지말라 할 생각은 없고
여러분들이 n수를 할지 말지 선택하는 데 있어서 도움이 되고자 글을 써볼가 합니다.
우리는 왜 선택을 해야하는 상황에서 고민을 하게 되는 걸까요?
바로 선택의 대상들마다 각각의 수익과 리스크가 존재하기 때문입니다.
그렇기에 우리는 선택을 하기 앞서 선택의 대상들은 무엇이 있고, 각 대상들마다 수익과 리스크는 무엇인지 정확히 알아야 올바른 선택을 할 수 있습니다.
1. 선택의 대상들 구체화
-> 선택을 하기 앞서 내가 선택할 수 있는 대상들이 무엇인지 정확하게 아는 것이 중요합니다.
선택의 대상들이 구체적일 수록 각 대상들의 수익과 리스크를 더 정확하게 파악해 낼 수 있기 때문입니다.
n수에 대한 선택에서 선택의 대상을 크게 나누면 [n수를 한다] vs [n수를 안 한다] 일 겁니다.
[n수를 한다]라는 대상에 대해서 구체화를 해보면
1. 독학재수를 할 건지
2. 재수종합반을 갈 건지기
3. 기숙학원을 갈 건지
정할 수 있습니다.
만약 재종반을 간다고 한다면
어떤 학원의 재종반을 갈 것이고 어떤 수업을 들을 건지 구체적으로 a4용지에 적어보십쇼.
[n수를 안 한다]라는 대상에 대해서 구체화를 해보면
전적대가 어디인지, 학과는 무엇이며 어떤 공부를 해야하는지, 동아리 활동은 무엇을 할 것인지, 알바는 뭐할 거고, 돈을 벌어서 무엇을 해보고 싶은지 등
n수를 안 한다 라고 할 때 무엇을 할 것인지 a4용지에 꽉 채워서 써보는 겁니다.
2. 조건부 수익이라면 확률 계산하기
-> [n수를 한다]라는 선택에서 수능성적이 높다는 조건을 만족해야 수익을 얻을 수 있습니다.
이러한 경우를 조건부 수익이라 하는데
이런 경우라면 조건을 만족할 확률을 계산해 봐야합니다.
확률을 계산하는 방법은
실패의 원인을 찾고 원인을 해결할 방법이 있다면 확률을 높게,
실패의 원인이 뭔지 모르겠고, 원인을 알았다 해도 해결 방법을 모르겠다면 확률을 낮게 판단하면 됩니다.
예를들면
-> 국어가 다른 과목들에 비해 성적이 낮다면
왜 국어 성적이 낮게 나왔는지 원인을 파악하고
원인을 해결해줄 방법이 있는지 찾아보는 것 등을 할 수 있을 겁니다.
3. 수익과 리스크 계산하기
-> 선택의 대상들을 구체화시키고, 조건부 수익에 대해서 확률을 계산해 봤다면 각 대상들의 수익과 리스크를 계산해 보는 것이다.
[n수를 한다]
*수익: 목표로 하는 성적이 나왔고 원하는 대학과 학과에 합격했다고 쳤을 때 수익을 구체적으로 적어보는 겁니다.
이때 수익의 내용이 “그냥 멋지니까”의 느낌이라면 타인에 의해 만들어진 목표일 가능성이 높습니다.
이런 경우라면 진지하게 다시 생각해 보는 것이 좋을 수 있습니다.
*리스크: n수를 해서 실패했을 경우에 대한 위험을 적어보면 됩니다.
구체적으로 생각나지 않는다면 유튜브에 n수 실패에 대한 이야기가 많이 나오니
이런 간접경험들을 참고해서 실패했을 경우 리스크를 구체화 해볼 수 있습니다.
[n수를 안 한다]
*수익: 관심있는 것에대해 공부하고 성과내는 기쁨은 엄청납니다.
그리고 세상에는 수능공부 말고도 해야 되는 공부가 넘쳐납니다.
혼자서 깊게 생각도 해보시고, 간접경험을 할 수 있는 곳들(책, 유튜브, 블로그, 커뮤니티 등)을 참고해서 자세히 적어보시면 됩니다.
*리스크: 대표적으로 학벌 컴플렉스가 있을 수 있습니다.
또는 비교적 불안정한 미래도 있을 수 있죠.
전적대에 진학하는게 어떤 의미인 건지 자신의 주관적인 느낌(ex. 그냥 맘에 안듬)에만 의존하지 마시고
객관적인 정보를 찾아보시길 바랍니다.
이제 이 내용에 관해 강조드릴 부분과 n수에 대한 저의 개인적인 생각을 쓰고 글을 마치도록 하겠습니다.
강조: 이 글을 읽고 실행해 보실 생각이라면 3일 정도 잡고 진지하게 써보시길 바랍니다.
그리고 뭘 써야 될지 모르겠을 땐 다양한 정보들을 참고하고, 추상적인 부분들은 gpt한테 질문해서 구체적으로 작성해 보시길 바랍니다.
n수에 대한 생각:
-> 하십쇼, 좋은 대학은 갈 수 있으면 가는게 좋습니다. 그리고 실패해서 크게 힘들수록 크게 성장할 겁니다.
-> 하지 마십쇼, 잃는게 더 많을 수 있습니다.
ps)- 다양한 생각들 댓글로 남겨주시면 감사하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
연세대 고려대에 진학하여 로스쿨에 진학하고 싶은데요 혹시 아시는 분은 학점 따기...
-
D-40 0
수능: W-39 / D-272 3월 학평: W-5 / D-40 모든 것을 빈틈없는 통제 하에.
-
물화생을 선택했는데 1학기부터 쭉 나갈것같고 1학기때 물리는 1단원까지, 화학은...
-
아시는 분 계신가요?
-
얼부기이 4
사실 안 잠
-
출근 1
-
로물콘 카페 아시는분 잇음? 보면 존나 현타만옴 딴세상 사람들만 잇는거같음 3
다 평백99 의대지원 시대 기숙 전장 얘기 ㅋㅋ..ㅎㅎ
-
꿩 대신 닭 7
이것도 나쁘지 않군… 애니프사단 합류도 고려해 보겠어요…
-
ㅇㅂㄱ 3
다시자러갈거에요
-
수학 4등급 노베 개념부터 시작하는데 하루 띰2개씩(강의4개) 끝내고 있어요 미적...
-
얼버기 5
-
24수능 35355입니다 (탐구는 각각 물2 지1) 건강 문제로 학교 자퇴 후...
-
이게 서로 배타적 관계인가
-
8시다 1
모두들 굿밤
-
메뉴 ㅊㅊ좀 인원은 나빼고 7-9
-
션티 커리 질문 1
작수에 듣기만 6개 틀려서 4뜬 재수생입니다. (듣기 안 틀리면 2후3초) 현재...
-
우선 본인은 국어강사 지망생임 둘 다 만족할만한 학교는 아니고 편입 준비할 생각...
-
중복조합부터 기억이 안남 근데 졸림
-
공부시뤄 3
-
예전에 유행할땐 저게 웃김? 이랫는데 지금보니깐 줠라웃기네 ㅋㅋㅋㅋ
-
뭘로 공부하는게 좋을까요? 화1 화2 공부해보려 하는데
-
걍 순열 조합이내
-
늦게 사탐런 5
생지러인데 3모 보고 사탐런 결정해도 시간 충분할까요?
-
언미화물2 97 95 1 97 98 이거 높반 가능한가요? 수학이 좆망했는데
-
ㅇㅂㄱ 0
-
링거 꽂고 다니는 것마냥 계속 충전기를 꽂아놓고 있어야해..
-
순순히 어두운 밤을 받아들이지 마오. 노인들이여, 저무는 하루에 소리치고...
-
명륜진사갈비 혼밥안되나..
-
아군
-
설대 최초합 등록 포기하고 의대 추가 합격된 곳으로 등록이 가능한 거죠? 그리고 이...
-
우선 괴델의 불완전성 정리제1정리. 페아노 공리계를 포함하는 어떠한 공리계도...
-
얼버기한 이유 7
오늘은 학원 강사 면접 보는 날이에용 ㅎㅎㅎ 절 응원해주세용!!
-
환전해놨는데 다 날아가네 ㅜㅜ
-
인생망함 3
ㅇㅇ
-
사람이되고싶다 4
앞으로 남은 272일동안 쑥과 마늘만 먹으며 수능을 준비한다면 4수 끝에 사람이 될수 잇을까
-
건동홍시임
-
아니 이거 근데 오른쪽 눈은 눈무링 안나고 왼쪽눈만 눈물이 자꾸 고이고 뿌옇게 보이고 이러는데 3
이거 진짜 이항한거 아님?
-
저도 무물보 18
해볼게요
-
네임드는 이 시간에도 무물글이 5분만에 저렇게 차는구나 4
이게 고닉인가...
-
할수이ㅛ다
-
돌아가구싶다 2
나 돌아갈래
-
일취클 피램 다 띁나면 사모로 넘어가는게 맞을까요?
-
애반가요??
-
피로도 다쓰고 캐릭터 생성제한도 걸려서 더 할게없네
-
1. 고전논리는 완전함2. 산술체계는 고전논리로 나타낼수 있음3. 산술체계는 완전함...
-
무엇이든 물어보아주세요 13
선넘질 ㄱㄴ 선넘질 ㄱㄴ은 쉽게 오지않습니다.
-
굿나잇 2
ㅃ
-
일클 취클 문학 피램 풀건데 고전시가는 인강or문풀중 뭐가 좋을까요?인강추천한다면...
첫번째 댓글의 주인공이 되어보세요.