재업) 거리곱
게시글 주소: https://orbi.kr/00071918899
여러분 비율관계 엄청 많잖아요? 다른거 외울것도 많은데 언제 이걸 다 외워요
물론 익숙해지면 자동으로 나오는거지만 다들 한번씩 문제 풀 때 어 이거 공식 뭐였지?한적 있으시죠??(나만 그런가..)
쨋든 비율관계는 알면 편하지만 외우기에는 용량이 참 아깝습니다
그래서 한 원리를 소개해드리고자 하는데요, 바로 대치 어둠의 스킬이라 알려진 거리곱입니다!!
거리곱은 크게 3가지로 나눠서 볼 수 있는데, 여기서는 2가지만 소개해드릴게요
(나머지 하나 넓이 거리곱은 나중에 기회 되면;;)
1.
먼저, 일반 거리곱입니다
삼차함수, 사차함수 상관 없고 허근만 안가지면 되요!! 중근도 가능!
다음과 같이 다항함수가 있을 때
함숫값을 찾으려면 기준선을 기준으로(꼭 x축 아니어도 됩니다. 실근 나오게끔 축을 설정하셔도 돼요)
최고차항과 근들과의 거리의 곱을 구하면 됩니다
주의해야할건 중근이면 2번, 3중근이면 3번 곱해주셔야 해요!!
이런 방식을 쓰면 삼차함수에서 극대-극소를 공식 없이 빠르게 구할수 있답니다ㅇㅅㅇ
삼중근 갖는 사차함수에서도 공식 없이 거리 빠르게 구하는거 ㄱㄴ이고요 꼭 그런거 아니더라도 원하는 함숫값을 함수식 없이 그래프만 그리면 나올 수 있게 연습해두는게 좋아여
2.
두번째로, 기울기 거리곱입니다
이건 두가지 버전이 있는데, 첫번째는 근들 중 한 지점에서의 기울기, 두번째는 근이 밝혀지지 않았을 때 임의의
점에서의 기울기에요
첫번째로, 근들 중 한 점에서의 기울기입니다.
근데 이건 일반 거리곱과 메커니즘이 같아요 그래서 1번이 익숙하다면 이것도 문제 없을겁니다
마찬가지로 최고차항의 계수에 그 점을 제외한 나머지 근들까지의 거리를 곱해주면 그 점에서의 기울기가 나와요
이건 1번보단 쓸 일이 많이는 없지만 가끔씩 나와주니 익혀두는 것을 권장합니다여기서 c점에서 기울기를 구하려면, 최고차항 k 곱하기 m곱하기 l+m하시면 되는거죠
두번째로 위에 썼던 기울기 거리곱보단 많이 쓰게 될 일반적인 상황에서 기울기 구하기입니다
여기선, 근이 뭔지 몰라도 극대, 극소인 지점만 알아도 미분계수를 구할 수 있는데요, 주의할 점은 아까와 달리
최고차항을 곱할 때 그냥 곱하는게 아니라 미분 하고 곱해야한다는겁니다
즉, ax^n이면 한번 미분한 na^(n-1)에서의 계수인 na를 곱해야 하는겁니다. 문자로 써서 복잡한거지 간단해요
예를 들어 4x^4이면 16을, -2x^3이면 -6을 곱하면 되는거죠
이걸 편의상 미분후 최고차항 계수 K라 하겠습니다.
그럼 한 지점에서의 미분계수는 K에 극대, 극소인 점들과 구할 지점의 x좌표의 거리들을 곱하면 나옵니다.여기서 r점에서의 미분계수는 3anm이 되는거죠
마무리
사실 왠만한 칼럼글에는 제 자작 문제를 넣으려고 했으나, 거리곱 스킬의 특성 상 예제를 넣기가 그래서 안넣었습니다
거리곱이라는게 문제풀이의 발상에 관한것, 풀이의 방향이 바뀌는 그런거가 아니라 단순히 특정 상황에서
계산을 그래프에서 바로 빠르게 해주는 촉매 역할의 스킬이라서 예제는 따로 넣지 않을게요
+이 거리곱은 제목에서도 말했듯이 삼.사차함수 비례관계를 외우지 않아도 풀리는, 비례관계의 상위버전이라
할 수 있습니다.. 연습하시면 비례관계 안쓰고 이거만 쓸 정도로 유익한 계산 스킬이에요
부호는 알아서 판단해서 붙이면 됩니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
3달을 땅바닥에 버려버렸다 16 0
저 갱생가능?
-
등록 완료 카톡 2 0
등록하면 진학사에서 등록 완료 카톡이 오던데 저는 못 받았는데 괜찮은거죠?
-
본인 특 3 0
초딩 때 어떤 여자애가 초콜렛 줬는데 친구들이 자기한테도 달래서 헤헤 거리면서...
-
오늘 7 1
파월 의장님의 의회 발언이 있군...
-
뭔가뭔가인데.. 정시 평백 자료 정확한건가요? 지방대 기준 뭔가 하나도 안맞는거...
-
어떤분이 연고대 자연계열희망이어도 걍 사탐하는게 좋을꺼라고 하던데 이게...
-
재수생 수학 개념 복습 질문 5 0
23수능 확통으로 백분위 기준 84 받았고 그뒤로 수학 안했었고 이번 수능 확통으로...
-
케인+dramamine 3 1
요즘 할아방탱이가 내 인스타 점령함
-
사문경제에서 생윤경제로 돌리까 9 0
돌릴까말까돌릴까말까
-
사랑해...보고싶다 2 0
사랑 해보고싶다.
-
애니프사 진짜 개 많네 5 0
으
-
아이고.. 1 0
진짜 나락갔네..
-
남사친 생일선물 23 0
이거 어떰 패딩 받고싶다는데
-
단과에서 그거해보고 싶은데 2 1
이름칸에 장난치기 현강을 못 갔다
-
기숙문자 아직도 안오는데 0 0
불합인가
-
고대연대 학종 난이도 3 1
최저 4합8/2합4 맞춘다는 기준으로 학우/계적/활우 뭐가 제일 쉽고 특징에 어떤게...
-
난 팔에는 털이 적음 4 1
수염은 생각보다 좀 나는데 자주 면도하고 다리털이 ㅈㄴ 많음...
이거 에제가 잇어야함, 이걸로는 이 거리곱의 마법을 이해할 수 없음

그런가딱히 예제가 생각 안낭..