[짧칼럼]절댓값에 관한 소고
게시글 주소: https://orbi.kr/00071914369
안녕하세요 새벽입니다.
앞으로는 칼럼 더 열심히 써볼게요 ㅜㅜ.
요새 너무 바빠서 잘 못쓰게 되는 것 같아요.
무튼 본론 들어가봅시다.
0) 절댓값은 강력한 조건.
절댓값 함수 때문인지 아무래도 절댓값이 나오면 좀 귀찮아하시는 분들이 많은 것 같아요.
|f(x)|=t 에서 f(x)를 접어올릴건지, f(x)=+-t로 풀건지....
심지어 둘 다 그리 간단한 풀이과정을 가지고 있지는 않구요.
사실 뭐가 더 간단한지는 문제마다 다르고, 그 점을 판단하는 것은
본인의 경험이 쌓이면서 저절로 해결되는 것이기에 오늘 할 부분은 이 부분이 아닙니다.
오늘 할 부분은 너무 당연한데도 많은 사람들이 놓치는 성질인
"절댓값은 무조건 양수"라는 성질을 이야기해보려고 해요.
너무 당연한거 아니야? 라고 말할 수도 있을 것 같은데요.
의외로 어려운 문제들에서 간단하지만 강력하게 쓰이게 됩니다.
그리고 사실 절댓값과 유사한 기능을 하는 녀석도 있는데,
바로 짝수제곱근이죠. 짝수제곱근 또한 절댓값처럼 가질 수 있는 부호를 0 아니면 양수로
만들어 버린다는 점에서 한번은 짚고 넘어갈 필요가 있습니다.
일단, 예제부터 봅시다.
1) 예제
빨리 노트에 푸시고 아래에 제가 쓴 사고 흐름이랑 맞춰보시면 좋을 것 같습니다.
제가 하고자 하는 말은 여기서 (가) 조건에서 바로 정보가 보여야 한다는 것입니다.
(2a_5-1/2a_3)^2=0이고, 제곱은 0 또는 양수만 가지므로,
제곱 안의 식이 0 따라서 공비가 +-1/2이라는 것을 알 수 있습니다.
아래 조건에서 바로 공비가 -1/2라는 사실을 알 수 있고,
동시에 초항이 양수이므로, (나) 조건을 계산하면, 초항이 9라는 사실까지 알아낼 수 있습니다.
따라서 S_6은 189/32입니다. (문제를 급하게 만들어서 값이 더럽네요 ㅜㅜ)
그럼 이제 아래 실전문제를 봐주세요.
2) 실전문제
이것도 노트에 푸시고 오세욥 ㅎㅎ
3) 해설
자 일단 (가) 조건을 볼까요.
이미 (언제 기출인지는 생각이 안나는데) 제 기억이 맞다면 |a|+|b|=0을 만족시키려면,
a=b=0이라는 발상은 나왔었죠. 거기에서 아주 살짝만 업그레이드 된 버젼이이에요.
| |은 0 또는 양수이니 좌변은 0이상인 값을 가지는 데, 마찬가지 이유로 (-| |이니깐)
우변은 0이하인 값을 가지죠.
이를 통해 f(k)=f(k-1)=f(-k)=0이라는 점을 알 수 있습니다.
그다음은 쉽죠.
(나) 조건에서 f(-1/k)=0인데, 부호상 -1/k = k-1 or -k이고 판별식 써보시면,
k^2 -k +1은 실근을 가지지 않으므로, k=1임을 알 수 있고,
극한값 계산해주시면, 최고차항의 계수 3/2 나오면서, f(4)=90이 됩니다.
이 개념과 추후 칼럼에서 다룰 여러가지 개념들이 복합된 미적문제도 나중엔 소개할 예정입니다!!
일단 오늘은 여기까지구요 보잘 것 없는 칼럼 읽어주셔서 감사합니다!!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
친구가 일본에서 사왔어요
-
아주대 지반공 최초합 발표 당시 예비 8번인데 오늘 두 명 빠졌어요.. 가능할까요?
-
전혀 상관없는 과를 와버렸네
-
한의대 가면 예+본과 6년에 군대 3년이면 9년인데… 열심히 공부한단 전제하에...
-
있으신가요 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 하 시발
-
그러하다
-
이말투쓰면바로찐따행
-
기하->미적런 1
지금 겨울방학동안 기하 시발점 벡터부분 하고있었는데 전기전자가 목표라 대학가서도...
-
잃은거 언제 다 복구 하지
-
올해 처음 뽑는 자전인데 28명 뽑고 처음에 예비 21뜸 2차까지 보면 8떴는데...
-
언미물2화2 97 100 1 47 47
-
그 피지컬이란것은 타고난것도 매우 크고 수험생활 이전에 경험한것들도 매우 크게...
-
이번주 월욜에 막 올러오ㅓ서 시작했는데 너무외롭고 걍 계속 눈물만나옴.. 학사에선...
-
난니들과다른사람이야
-
오티갈때 팬티는 4
켈빈이랑 떠그 언제나 준비되어있는 곰돌이
-
한 20억 모이서 파이어족 하고 싶다 일하기 싫어
-
하하
-
외화유출범 잔다 4
컹컹
-
아 롤할까 7
ㅈㄴ 피곤한데 잠 안 오는 상태 굿
-
누구말투임 진짜 ㅋㅋ
-
요즘은 디지털 시대라 세미 정장까진 허용되나요?
-
잘꼬야 0
-
어 왜 0빙고지
-
나도 해볼까해서
-
의대가시는분들 4
올해 학교 가실건가요?
-
교환학생으로 미국 쪽 갔다 오면 미식축구 관심 가지는 경우가 은근히 생기더군요. 0
일단 미국에서 NFL 다음으로 인기 높은 스포츠가 대학풋볼이라서 그런가...슈퍼볼...
-
그 사람들중에 팔로워수가 팔로잉수보다 꽤 많은 사람들이 있음 근데 그 사람들이 날...
-
나랑 쪽지할 6
여르비 급구
-
12광탈의 여파로 한 2달 죽어있다가ㅠㅠ 1월쯤부터 친구들 만나고 힐링 좀 하면서...
-
흐엉엉엉엉
-
재미없어 다시 오르란 말이야
-
인거요? 현역이고 지금까지 미적만 파느라 수12를 못했었어요 3모 전까지 완강할려고...
-
옯창빙고 ㅇㅈ 7
분명 뉴비 맞는데
-
새터갈때 0
옷 뭐입지 사야되는데 돈쓰기 아깝고 나 대학생하기싫어
-
진짜 개춥네 0
히터도 고장났고.. 심지어 라디에이터도 안켜주네
-
올해 수능보는 현역입니다 선택과목은 확통입니다 미적 하고싶었는데.. 선행 안해놓아서...
-
섭3주자 서브 330주자가 대체몇명이야 ㅡ여기들어가면 서브3주자에게 배울수있는건가
-
유튜부에서 보던 분이셨는데 메가런칭하셨누 ㄷㄷ
-
추구할 수 있는 나이가 되었으니
-
슬슬잘까 0
볼게없네
-
가방에 주렁주렁 매달고 다녀야지 혹시 몰라서 두개씩 삼 저번에 나중에 사야지 했다가...
-
문제 접근방식과 사고흐름을 잘 설명해주시는 분이면 좋겠어요
-
너희들에게 100점이 주어지리라
-
시발...........
-
부계에서 온 톡이 뜨네요
-
아닠ㅋㅋㅋㅋㅋㅋ Qna조교들이 라이브 영상을 못 보는건 대체 어느 누구 머리속에서...
-
여르비 저한테 쪽지 해주세요
-
이건 일단 단계부터 빡셈 1.친해지기 2.좀 더 친해지기 3.전화번호받기...
-
우부ㅜ부 2
선착 한며ㅓㅇ 사랑해
-
다 만족함?
절댓값이 은근히 강력한 재료임
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
맞아용1)예저뮨제 초항 9/2입니다
![](https://s3.orbi.kr/data/emoticons/oribi_animated/016.gif)
앗 실수가.... 죄송합니다작년 7월인가 14번에 이 개념 이용한 좋은 문제가 있었죠 ㅎㅎ