치환해서 극한값 구하는거 외워야됨?
게시글 주소: https://orbi.kr/00071864922
이 문젠데왜 치환하는지도 모르겠고 이해가 잘 안감... 2번 풀이처럼 푸는 거 외워야됨?
수렴하는 극한값을 bn이라는 수열로 치환한다음 an을 bn으로 표현해서 수렴렴렴 계산산산 한다는 아이디어인가?
강의에서도 안알려줘서...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
한 달에 4번 쉬는 재수생임 보통 쉴때 운동,독서,산책해요 근데 내가 서울 가는걸...
-
헉!!!
-
안그러면 당신 이름으로 일베에 가입하겠습니다.
-
너만을 사랑하고 있다는 걸들어줄 사람도 없이 빗속으로 흩어지네너의 이름을...
-
왤케 하나하나 다 좆같냐 갑자기
-
독재학원에서 한달정도 공부중이고 그전까지도 집앞 독서실에서 공부를 해왔었어요 근데...
-
명제 다보탑은 경주에 있다 명제 다보탑이 경주에 있을 수도 있다 두 명제는...
-
이상형 발견
-
보통 수능준비하시는 1년동안 수학엔제 얼마나 푸시는거같나요??? 4
얼마정도 푸시는거같나요???
-
문제를 정확하게 풀면서 피지컬 늘리기 6월 모평 이후에 문제 양치기 하기 어떻게 생각함?
-
가끔 지피티가 지브리로 변환을 못 하겠다고 하는 경우가 있는데(feat. 도긩이) 2
그때 지피티한테 "그럼 이 사진을 지브리 느낌/스타일로 만들려면 어떤 프롬프트가...
-
N수땜에 메가패스 사려고 며칠 뛰려하는데 알바몬에서 신청하면 될까요? 많이...
-
뭐가 다른거임? 쎈 대수 미적1 사도 됨?
-
좋은 선택일까요? 재슈생이어서 시간은 많습니다.
-
진짜 존예노
-
작수 미적 3틀 84점이었던 반수생입니다. 제가 그래도 공통은 나름 자신있는데,...
-
제가 6모때 21221 9모때 11211를 받고 작수에 미끄러져서 31222를...
-
도전VS포기 다른과고 어디에 출몰하는지 암
-
넹
-
빤쮸 샀는데 5
되게 만족스럽네
-
오랜만입니다 11
어제 너무 아파서 거의 하루 오르비에 못들어왔네요
-
오르비에서 딴글은 안쓰고 맨날 정치뉴스 꾸역꾸역 가져오면서 그와중에 자기딴엔...
-
기출 셤지 돌려보면 높4정도 나오는데 어떤 방식으로 공부하는게 제일 좋을까요..?...
-
재수생 사탐런 2
연고대 공대노리는 재수생입니다.세지 지1 조합하다가 지구버리고 사탐런 하려는데...
-
하
-
설수의 5
1등은 그렇고 2등으로 입학해주마
-
다양한 수식어를 잘못 사용하게 되면 수식어가 추가 정보를 제공하는 문장요소...
-
진짜 인생 개꿀빨면서 지랄하네
-
잇올 빌보드 2
더럽게 안올라오네 15일 지났는데 뭐하는것들이지
-
건양대 의대에 가고 싶은데 건양의처럼 백분위 의대고 미기 가산점이 없는 대학만...
-
2028학년도 동국대 모집단위별 전공 관련 교과 영역 0
2028학년도 동국대 모집단위별 전공 관련 교.. : 네이버블로그
-
국어에서 숨은 그림 찾기 같은 문제는 어떻게 처리해야 할까요? 5
독서도 그렇고 문학도 그렇고, 가끔 진짜 눈썰미가 좋거나 기억력이 ㅈㄴ좋은 사람들만...
-
[속보] 美 자동차·주요부품 25% 관세 정식 발효 0
[속보] 美 자동차·주요부품 25% 관세 정식 발효 당신의 제보가 뉴스로...
-
귀엽다
-
놀아줘요 2
-
계엄하고 며칠뒤에 약간 사놨는데 달달하네 좀 더 살껄 ㅜ
-
아오 원래 고1부터 교육과정 바뀌니까 과외할생각 없었는데 왜 고3n수생들은 아무도...
-
통수칠 준비중인 아재인데 통합 수능 준비 할라면 그냥 시중 통합 사회 통합 과학...
-
재수생 6모 2
4월 10일 까지 모교 가서 신청하면 되는 거죠? 일찍 가면 좋고 그런거 없겠죠?
-
복귀중 0
으악
-
ㅈㄱㄴ
-
평가원 #~#
-
N제 해설강의는 1
다 보나요? 틀린것만 보나요?
-
“재수 1년 박아서 실패했는데 반수로 되겠냐“ → 4개월만에 반수 성공 “솔직히...
-
사탐 공부법 0
6모 1등급 목표면 6모 전까지 개념,기출,심화개념..어디까지 나가야할까요 사탐은...
-
제가 아침에 일찍 일어나서 공부해도 걍 잠이 솔솔 오길래 요즘은 8시에 기상해서...
-
갑 도가 을도 도가인줄.. (순자래) 최근 생윤에서 도가가 유교인척 하는경우가...
? 뉴런에 진짜 안나와요?
저거 킥오프에요
수렴렴렴 계산산산 다 따라하는구나
뉴런 들었어서 뇌리에 박힘요 ㅋㅋㅋㅋ
걍 1번처럼만 풀어도 상관없을듯
근데 또 엄밀한거 좋아해서
저건 너무 야매인데 2번 풀이는 너무 어려운?
누가 2번처럼 풀이 쓰라고 시키면 막힘없이 쓸 줄 아는 실력 만들어두고
실전에서 1번처럼 하셔야합니다
이게맞다
아 그게 정배군요 감사합니다
차이는... 없긴 해요
근데 위에는 그냥 야매로 빠르게 풀 수 있는데,
아래는 발상이 잘 떠오르지도 않고 왜 치환해야되는지 이해가 잘 안가서요.
지금처럼 단순한 꼴에서는 무조건 1번으로 풀어야하지만
복잡한 꼴로 문제가 주어지면 2번으로 접근하는 방법도 생각해야 한다라는 김기현T의 생각이 녹아있는 것 같네요
아하 그렇군요 정말 감사합니다
근데 대충 본문에 써둔 걸로 이해하고 아래 풀이도 공부해야겠네요...
대충 분모분자에 극한 나누어주면 계산 빠르게 되지 않나요
분모 분자에 뭘로 나눠야 하나요?
그냥 수열 an 띡 하고 준거라
분모분자 모두 0으로 수렴하지 않으니까 위 아래 둘다 리미트 씌워서 계산하면 되지 않나요
0/0꼴에서 수렴값이 16/7이 나올 수도 있는 거 아닌가요? 전 분모 분자 수렴성이 확실하지 않아서 리미트 쪼개는게 불가능하다고 생각하거든요.
쪼개면 안 됩니다 원래
근데 제가 말씀드렸듯이 쟤는 상수곱과 상수 덧셈으로 구성한 거라 0/0이 나올 수 없어서 쪼개도 됩니다
정말 감사합니다 사랑합니다
둘이 0/0꼴이 안되니까 가능하죠
이해했읍니다 감사합니다
수능은 저렇게 풀면 멍청한 거고 내신 서술형에선 저렇게 풀어야 합니다.
아래에서 치환을 해야 하는 이유는 어떤 수렴하는 수열 a_n 과 b_n에 대하여 이것들의 사칙연산으로 만들어낸, 또는 상수의 곱 혹은 덧셈/뺄셈으로 만들어낸 수열이 수렴하며 그 극한값은 기존 극한값에 해당하는 연산을 취한 것과 같다는 것이 알려진 사실인데, 저기서 주어진 합성 수열의 극한값으로는 a_n이라는 수열에 대한 정보를 직접적으로 얻을 수가 없습니다. (사실 유리함수처럼 만들어서 어떻게어떻게 비벼볼 수는 있는데 그게 치환하는 거랑 다를 바가 없습니다.) 그래서 치환을 통해 a_n을 수렴하는 수열 b_n에 사칙연산을 적용해서 만든 수열로 간접적으로 구성하여 보는 겁니다. 우리가 아는 것, 즉 전제로 주어진 사실들만 사용해야 하니까요.
다만 주어진 상황에서 극한값 lim (5a_n - 2)이 존재한다고 가정을 하는 것이 가능하므로, a_n의 극한값 역시 존재하며 당연하게도 그것의 사칙연산으로 만들어낸 수열인 (2a_n +1)/(4a_n-3)의 극한도 존재함과 동시에 그 극한값을 a_n의 극한값을 alpha로 두고 상응하는 사칙연산을 취하여 구할 수 있습니다. 이런 풀이가 수능에서는 가장 일반적입니다.
엄밀함을 요구한다면 치환 없이 푸는 풀이는 0점이라고 보면 됩니다.
선생님 정말 정성스러운 답변 감사합니다.
다만 의문점이 하나 있는데, an의 극한값을 알파로 두고 사칙연산을 한다고 할때,
(2an + 1)/(4an - 3)이 0/0꼴이라면 극한을 쪼개서 계산하는게 불가능하지 않나요?
애초에 an의 극한값을 알파로 두고 사칙연산을 하는 것부터 엄밀함과는 거리가 멀지만 궁금해서 여쭤봅니다.
a_n의 극한이 존재한다고 가정했을 때
애초에 식의 형태 상 분자 분모가 둘 다 0일 수는 없고, 분모 또는 분자만 0인 것도 불가능합니다. 값이 0이 아닌 실수로 나온다는 것이 원래 전제이고 alpha를 사용하는 것은 우리가 쌈마이로 도입한 전제니까요.
아 그렇네요 정말 감사합니다!