치환해서 극한값 구하는거 외워야됨?
게시글 주소: https://orbi.kr/00071864922
이 문젠데왜 치환하는지도 모르겠고 이해가 잘 안감... 2번 풀이처럼 푸는 거 외워야됨?
수렴하는 극한값을 bn이라는 수열로 치환한다음 an을 bn으로 표현해서 수렴렴렴 계산산산 한다는 아이디어인가?
강의에서도 안알려줘서...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일의 순서와 목적을 구분 못하는 거랑 같은 듯. .. 브레인크래커 1강만 봐도...
-
ㄱㄴ?
-
실모 보관하심? 7
브릿지같은 하프모나 실모 오답만 하고 버림? 아니면 따로 보관해둠??
-
정답이 없는 분야에 대해 말 길어지면 결국 싸움남 ㅋㅋ 가족들이랑도 안함
-
1,2학년때 교과성적이랑 세특에 신경을 쓸려고 아예 공교를 안들었고 지금 고3인데...
-
평가원 #~#
-
이렇게 생각하는 몇몇 보이네 문재인 겪어보면 알겠지만 이런애들이 내란견보다 더 위험하긴함
-
루비짱 0
하이~ 나니가 스키?
-
그런가요?
-
팔릴거 같은데
-
점심 1
삼겹살+비빔면 개꿀맛
-
미궁속으로.... 난이도 업업 해서 22수능 어게인 가나?
-
이재명, 가천대 '이름도 모르는 대학' 발언 논란에 공식 사과 지난 4일 이재명...
-
국어 -25수능과 유사 수학-공통불 미적 약불 과탐-1컷 죄다 47로 맞춤 ㅇㅇ
-
안녕하세요. 제 상황은 전 에 적었듯이 약 한 달 전, 회사를 퇴직하고 본격적으로...
-
묘하게 성대 교표 닮음
-
보통 일단 그냥 넘기나? 아니면 다른 강의나 구글에서 찾아보고 그럼?
-
24수능 꽤 괜찮다 생각했는데 비상식적인 독서 난이도하락 눈알굴리기 테스트 문학...
-
가 잘맞는 거 같음. .... 처음엔 했던 소리 또 하면 머리에 쥐날 거 같은데...
-
ㅇㄷㄴㅂㅌ
-
야 이 의뱃들아 4
나도 의뱃 줘
-
강기원 어싸에 매일학습 무등비/삼도극/확률통계 5문항씩 들어있었고
-
???:수능의 정상화 실패
-
한완기 교사경이랑 정병호t n제 고민중인데 뭐가 더 나을까? 지금은...
-
사문 사설 추천 2
사문 사설 모고 추천해주세요 강k 사만다 좋다는데 의견이 너무 다양해서 뭘 먼저...
-
대병파산 간호법 싹다 통관데 윤통 탄핵하나로 그게 본전치기는 되냐 ㅋ
-
난 기트남어 힛
-
빅이벤트가 연속으로
-
먼 무등비 삼도극이여
-
6모 만점을 받아오면 바로 앞에서 ’드릴‘을 풀어도 뭐라 하지 않겠다 ㄷㄷ
-
버리고 92맞음
-
이제 진짜 해야되죠? 계속 유기했는디..
-
대 재 명
-
아이고 0
https://n.news.naver.com/mnews/article/081/0003...
-
(속보)이재명 의대생 미복귀시 전원 기본주택에 입주시키겠다고 선언 3
라고 할뻔~
-
1. 집에서 쉬어꼬부라져서 살려달라고 울부짖는 신김치 준비 2. 소면을 삶는다 3....
-
모의고사에 의미부여하기
-
정시확대 시켜주신분 의대정책 안하셨던분 킬러배제 안하셨던 분... 그저 goat 뒤늦게 깨달았습니다
-
누구들을까요
-
아님 계속 휴학?
-
의대 해결방법 2
그냥 복귀하든 말든 수능 못치게 막고 다 쫓아내면 안되나..
-
고딩인데 갑자기 궁금
-
실검 3
6평 이재명 기각
-
오르비 여론 조사 14
이재명 찍는다/아니다
-
전자가 나은거아님?ㅠㅋㅋ 새로 생긴 지역인재에서 정원을 빼야하는거 아니냐
? 뉴런에 진짜 안나와요?
저거 킥오프에요
수렴렴렴 계산산산 다 따라하는구나
뉴런 들었어서 뇌리에 박힘요 ㅋㅋㅋㅋ
걍 1번처럼만 풀어도 상관없을듯
근데 또 엄밀한거 좋아해서
저건 너무 야매인데 2번 풀이는 너무 어려운?
누가 2번처럼 풀이 쓰라고 시키면 막힘없이 쓸 줄 아는 실력 만들어두고
실전에서 1번처럼 하셔야합니다
이게맞다
아 그게 정배군요 감사합니다
차이는... 없긴 해요
근데 위에는 그냥 야매로 빠르게 풀 수 있는데,
아래는 발상이 잘 떠오르지도 않고 왜 치환해야되는지 이해가 잘 안가서요.
지금처럼 단순한 꼴에서는 무조건 1번으로 풀어야하지만
복잡한 꼴로 문제가 주어지면 2번으로 접근하는 방법도 생각해야 한다라는 김기현T의 생각이 녹아있는 것 같네요
아하 그렇군요 정말 감사합니다
근데 대충 본문에 써둔 걸로 이해하고 아래 풀이도 공부해야겠네요...
대충 분모분자에 극한 나누어주면 계산 빠르게 되지 않나요
분모 분자에 뭘로 나눠야 하나요?
그냥 수열 an 띡 하고 준거라
분모분자 모두 0으로 수렴하지 않으니까 위 아래 둘다 리미트 씌워서 계산하면 되지 않나요
0/0꼴에서 수렴값이 16/7이 나올 수도 있는 거 아닌가요? 전 분모 분자 수렴성이 확실하지 않아서 리미트 쪼개는게 불가능하다고 생각하거든요.
쪼개면 안 됩니다 원래
근데 제가 말씀드렸듯이 쟤는 상수곱과 상수 덧셈으로 구성한 거라 0/0이 나올 수 없어서 쪼개도 됩니다
정말 감사합니다 사랑합니다
둘이 0/0꼴이 안되니까 가능하죠
이해했읍니다 감사합니다
수능은 저렇게 풀면 멍청한 거고 내신 서술형에선 저렇게 풀어야 합니다.
아래에서 치환을 해야 하는 이유는 어떤 수렴하는 수열 a_n 과 b_n에 대하여 이것들의 사칙연산으로 만들어낸, 또는 상수의 곱 혹은 덧셈/뺄셈으로 만들어낸 수열이 수렴하며 그 극한값은 기존 극한값에 해당하는 연산을 취한 것과 같다는 것이 알려진 사실인데, 저기서 주어진 합성 수열의 극한값으로는 a_n이라는 수열에 대한 정보를 직접적으로 얻을 수가 없습니다. (사실 유리함수처럼 만들어서 어떻게어떻게 비벼볼 수는 있는데 그게 치환하는 거랑 다를 바가 없습니다.) 그래서 치환을 통해 a_n을 수렴하는 수열 b_n에 사칙연산을 적용해서 만든 수열로 간접적으로 구성하여 보는 겁니다. 우리가 아는 것, 즉 전제로 주어진 사실들만 사용해야 하니까요.
다만 주어진 상황에서 극한값 lim (5a_n - 2)이 존재한다고 가정을 하는 것이 가능하므로, a_n의 극한값 역시 존재하며 당연하게도 그것의 사칙연산으로 만들어낸 수열인 (2a_n +1)/(4a_n-3)의 극한도 존재함과 동시에 그 극한값을 a_n의 극한값을 alpha로 두고 상응하는 사칙연산을 취하여 구할 수 있습니다. 이런 풀이가 수능에서는 가장 일반적입니다.
엄밀함을 요구한다면 치환 없이 푸는 풀이는 0점이라고 보면 됩니다.
선생님 정말 정성스러운 답변 감사합니다.
다만 의문점이 하나 있는데, an의 극한값을 알파로 두고 사칙연산을 한다고 할때,
(2an + 1)/(4an - 3)이 0/0꼴이라면 극한을 쪼개서 계산하는게 불가능하지 않나요?
애초에 an의 극한값을 알파로 두고 사칙연산을 하는 것부터 엄밀함과는 거리가 멀지만 궁금해서 여쭤봅니다.
a_n의 극한이 존재한다고 가정했을 때
애초에 식의 형태 상 분자 분모가 둘 다 0일 수는 없고, 분모 또는 분자만 0인 것도 불가능합니다. 값이 0이 아닌 실수로 나온다는 것이 원래 전제이고 alpha를 사용하는 것은 우리가 쌈마이로 도입한 전제니까요.
아 그렇네요 정말 감사합니다!