3월 모의고사 대비 수학 실전 모의고사 배포 (자작) (22 문항)
게시글 주소: https://orbi.kr/00071826639
2025학년도 대학수학능력시험 3월 모의평가 문제지.pdf
2025학년도 대학수학능력시험 3월 모의평가 답지.pdf
안녕하세요. 원 점입니다. 약 한 달 동안 준비했던 2025 3월 모의고사 대비 실전 모의고사를 배포하고자 합니다.
팀이 아닌 모두 혼자 제작 및 검토한 문항으로, 15번과 21번은 불가피하게 사전에 공유했던 문제를 사용했습니다.
하지만 이외의 문제는 모두 새롭게 만든 문제임을 알려드립니다. 오류가 있는 경우 알려주시면 감사하겠습니다. :)
2025학년도 수능을 친 06년생으로써, 교육과정평가원에서 출제한 6월, 9월, 수능 수학 문제지의 공통 문항의 난이도는
6월, 수능, 9월 순서라고 생각합니다. 07년생 학생 여러분이 이와 비슷한 난이도를 경험할 수 있도록, 모든 문제지를
참고하여 최대한 수능에 가까운 난이도를 구상하기 위해서 노력하였습니다. 교육과정평가원에서 만든 문제지를
참고하며 만들다 보니 문제가 비슷한 느낌이 들 수 있습니다. 하지만 푸시면 다른 느낌을 받을 수 있다고 생각합니다.
제가 생각하는 2025 수능 수학은 "그리 어렵진 않았으나, 실수할 수 있는 부분이 많았다."입니다.
이러한 제 생각을 바탕으로 실전 모의고사를 제작했음을 알려드립니다.
아래는 주요 문항에 대한 코멘트가 있습니다. 문제를 풀어보시고 보시는 것을 권장합니다.
[5지선다형]
9월과 수능에서 출제되었던 로그의 연산 문제인데, 약간 아쉬워서 조금 귀찮아 보기에 만들었습니다.
계산을 해도 되지만, 두 수 중 한 개의 수가 1이면 합과 곱의 차는 1이 된다는 점을 안다면 쉽게 넘어갈 수 있습니다.
9월과 수능에서 출제된 정적분의 계산 문제입니다. 모의고사에서는 단순 계산으로 출제되었습니다.
하지만, 그와 다르게 이차 함수의 특징을 이용하여 푸는 문제로 만들어 보았습니다. 계산을 해도 해결 가능합니다.
수능에서 출제된 삼각함수 문제입니다. a와 b가 자연수이므로, 그 점을 이용해 b의 값을 먼저 구합니다.
그리고 주기를 이용해 a의 값을 구하면 해결할 수 있습니다.
9월과 수능에서 출제된 속도 문제입니다. 쉽게 출제되었어서, 똑같이 쉽게 출제했습니다.
적분하고 인수 분해 하시면 쉽게 해결 가능합니다.
9월과 수능에서 출제된 수열 문제는 모두 새로운 수열을 정의했지만, 이 문제는 등차수열의 틀을 갖추도록 했습니다.
an의 일반항을 구하고 (나)의 특수 조건을 바탕으로 bn을 추론하면 해결 가능합니다.
6월, 9월과 수능에서 출제된 함수의 넓이 문제입니다. 9월 문제와 비슷한 느낌이 있습니다.
하지만, 조금 다르게 이차 함수의 특징을 이용하는 문제를 만들어 보았습니다. 한 번의 정적분으로 해결 가능합니다.
수능에서 출제된 도형 문제입니다. 수능에서 계산을 어느 정도 요구했었다는 제 기억을 바탕으로 만들었습니다.
사인 법칙과 코사인 법칙 각각 2번 이용하면 해결이 가능합니다.
6월, 9월과 수능에서 출제된 함수 추론 문제입니다. 수능과 비슷하게 함수의 개형을 찾는 문제로 만들었습니다.
실수 k의 범위를 나누어 조건에 맞는 함수를 추론하면 해결할 수 있습니다.
[단답형]
6월, 9월, 수능과 다르게 연속 단원에서 19번을 출제해 보았습니다. 문제의 난이도는 6월과 비슷하게 구상했습니다.
f(6)=6이라는 점을 이용해 f(x)를 구하고 x=5에서의 극한값과 함숫값이 같다는 점을 이용하면 해결 가능합니다.
수능에서 출제된 지수, 로그의 활용 문제입니다. 수능과 마찬가지로 계산이 조금 있는 문제로 만들어 보았습니다.
계산만 하면 풀 수 있지만, 원점을 이용하여 원점을 지나고 기울기가 직선 AB의 기울기와 같은 일차 함수를 구합니다.
그리고 점 A 또는 점 B와 그 직선 사이의 거리를 구하면 조금이나마 계산을 줄이고 해결 가능합니다.
6월, 9월과 수능에 꾸준히 출제되었던 함수 추론 문제입니다. 6월과 수능처럼 계산이 최대한 적도록 노력했습니다.
그 결과 계산을 하지 않고도 해결 가능한 문제를 사용하게 되었습니다.
ㄴ명제가 언뜻 보기에는 계산으로 풀어야 하는 것처럼 보이지만, 대우를 이용하면 계산 없이 쉽게 해결 가능합니다.
-> 함수 f(x)가 실수 전체의 집합에서 증가하지 않으면, 함수 g(x)도 실수 전체의 집합에서 증가하지 않는다.
6월, 9월과 수능에서 꾸준히 출제되었던 수열 문제입니다. 모든 수열 문제가 헷갈리게 출제된 점을 반영했습니다.
위 식이 중근을 가지는 경우와 그렇지 않은 경우를 바탕으로 하여 추론하면 해결 가능합니다.
의도적으로 역추론을 하기 싫어지도록 a6을 분수로 제공했습니다. a1부터 차근차근 추론 해보시기 바랍니다.
조금 있으면 07년생 여러분의 수험 생활이 시작됩니다.
무슨 말을 하기보다는, 이런 식으로 실전 모의고사를 제공하며 공부를 돕는 것이 가장 큰 응원이라고 생각했습니다.
항상 응원하겠습니다! 화이팅입니다. :)
또한, 재수생분들도 응원합니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
죽어봤자 부모님이 안슬퍼할듯
-
흠.. 왜지
-
그만해다오..
-
엔제중에 말고 그냥 절대 난도 자체로요
-
경제학과 목표로 하는 재수생입니다 작수 미적 했다가 확통이 공부량 자체가 적다,...
-
더브로커 프로 0
-
근데 지2에괴수가너무많음 당장 오르비에도 잇고
-
다시 해야겠너.. 인강듣기시른데 문제만풀까 그냥 인강이 싫다 잠온다
-
본인 머릿속 1
(이미지 떡밥 재탕의 삼탕 하고 싶은데 누가 안여나 눈치보면서 기다리는중)
-
임정환 생윤 들으려는데 림잇 듣는게 난가요 임팩트 듣는게 난가요 1
제가 생윤 공부를 24년엔 안 했고 23년 24년에 했어서 머 배웠는지는 기억나는데...
-
시즌3 개강기원 4
-
가능할까요? 2
원장연 투장연 모두 안락사 당하는 과탐 상폐엔딩 가능할까요?
-
돈 버는 시기 늦어지는 거 걱정되고...
-
원래도 무섭게 생겼는데 이젠 보면 혐오의 시대 밖에 생각 안나노
-
강민철 듣습니다
-
으르렁 멍멍 4
살려다오
-
민지: 낙지 탕탕이 나도 안 먹어 봤어.민지: 아! 나 이제 안 먹어봤다는 말 좀...
-
ㅇㅈ?
-
원과목 스킵하고 투과목만 들으면 복잡한 절차 거치는건 아니고 그냥 내가 좀 따라가기 힘들 뿐이죠?
-
32233
-
ㅇㅂㅋㄷ ㅇㅇ 갔네 20
암호문 on
-
어떤 글을 써볼까
-
개피곤하다 4
사는게쉽지않다
-
몸이 녹초야 0
힘들다 인생 그치만 나에게도 언젠간 밝은날이 올거야
-
가능할까요? 10
26수능 물1 화1 만백 100 가능할까요?
-
뭐하는 새7키냐는 나쁜말은 노노..
-
상당히 마음에 드는 것 같아서 찍먹해볼까 고민중입니다
-
있나요?? 지금 계획은 빅포텐 -> 이해원누나 -> 또릴 갈 예정인데 꼭...
-
저는 이제 방법을 알 것 같아요 6모 보고 나중에 다시 오겠습니다
-
막 읔엨 된다는데 너무 궁금함
-
저는 안 풀어봤고 친구말로는 그냥 좀 꼬아둔 느낌만 많이 난다던대 맞나요?? 글고...
-
다시 볼 때마다 새로운 게 보이는 것 같음 근데 엄기은t 광클 성공해서 또 볼 예정ㅋㅋ
-
ㅋㅋㅋㅋ 진찌 미치겠네 가족한테도 말할수 없는 일이 믿었던 애 때문에 생김 나 진짜 어떻하지
-
다 다른스타일로 이쁨 ㅎ 셋중에 한명라도 내거였으면..
-
부탁드립니다
-
예시 하나만 들어주세여
-
제발
-
RESET KOREA
-
800미리 먹었네 안녕하세요 언데드입니다
-
몇개는 아무리 봐도 13~14급은 아닌 것 같은데
-
프로필을 누르니 비둘기만 보일 따름이네요...
-
하..내일 더 많이..더 열심히..
-
작수 80점 받고 재수한지 두달 다 돼가는데 좀 쉬어서 그런가 작년보다 점수도 더...
-
화2 자작 풀이 2
https://url.kr/iqpbee 제가 만들었던 이 화2 문제들을 다시...
-
효과어때요??
-
좌표설정하다가 무의미한 식 나오는 거 방지하는 칼럼 나오면 좋겠담 0
급하게 좌표설정하다보면, (제가 허수라서 무지성으로 해서 그런걸수도 있음) 항등식이...
-
하원완료 2
빨리집가서자야지
-
4규 미적 오답률 7~80퍼인데 다음 n제 뭐할까요 3
어그로 ㅈㅅ 정답률 7~80퍼쯤 되는데 다음 n제 뭐할까요 처음 봤을 때 풀이...
정말 감사합니다 잘 풀게요

풀어주셔서 감사합니다감사합니다 (_ _)
저도 한번 풀어봐야겠어요
좋은 자료 감사합니다
풀어주셔서 감사합니다 :)
한번 풀어봤는데 문제퀄이 상당했어요
개인적으로 10번,15번,19번 같은 문제가 진짜 좋았던 것 같아요.
진짜 잘 풀어봤고 다음에도 좋은 문제 내주시길 기대할게요

감사합니다. 앞으로도 좋은 문제 공유 할 수 있도록 노력하겠습니다!5번에 답 3인데 1로 써져있네요

맞네용 감사합니다