미적분 문제 (2000덕)
게시글 주소: https://orbi.kr/00071781582
첫 풀이 2000덕 드리겠습니다!
(+ 유명한 문제입니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄱㄴ
-
렌즈끼고 알 없는 안경 끼니까 친구가 알 없는거 바로 알아보던데 ㅋㅋㅋ 티나나
-
오르비최저학력은나구나 21
ㄹㅇ..
-
멀 어떡해 그냥 발뺌하면되는거지
-
흠
-
잘자 아기들아 3
엉아 자러 간다잉
-
다시금 떠올리게되네
-
우울하다 1
지금 건대 높공 재학 중인데 반수 관련해서 부모님이랑 의견이 안 맞았어서......
-
사문 자작 3
-
진사람 삭발하고 인증하기 ㅇㅇ
-
혀 닦다가 토함 11
ㅜㅜ
-
나 언제 죽음? 4
하 힘들어 ㅠ
-
1회 62점 2회 86점
-
어림도 없지 시발
-
윤사 기출 1
윤리와 사상 마더텅은 끝냈는데 다음으로 임정환쌤의 임팩트를 할까요? 아니면 현돌의 기시감을 할까요?
-
으흐흐
-
난 내일 피파만 팔까 14
팀 갖다 팔까
-
공부용으로 기출지문분석 / 해설집기능만들어봤음요 여기서 더 상세하게 모르는거도...
-
진짜 송도 기숙사에서 으챠으챠 팟팟 쭈왑쭈왑 하나요 8
절실합니다 답변 부탁드려요
-
기철햄 들으면 개씹좆노베여도 3등급까지 떠먹여주는데 ㄹㅇ.. 홍보를 안해서 그런건가
-
잘자 7
ㅎㅎ
-
근데안되는거암
-
오노추 4
노엘 피처링 너무너무너무 좋고
-
님드라! 14
한 며칠정도 과탐만 해보는거 어때! 이거 감 좀 잡고싶어... 맨날 개념도 까먹고..
-
올해 초에 오르비 뒤집었다가 탈릅한사람 아닌가
-
그낭 하루종일 놀아버렸어 얼불춤 좀만 더하다 자야지
-
n제 여러권 추천해주시면 감사하겠습니다..
-
얼굴 형이나 하관이 얄쌍한게 외모에 미치는 영향이 큼? V라인이라고하죠
-
먼저 자야겠네요 9
잘자요
-
과연 내년에 입학하고서 연뽕이 얼마만에 빠질까.
-
수학 풀이에 관하여 12
자기 맞는 풀이대로 푸세요 다만, 남(주변이든, 강사, 교사 등 선생님이든..)...
-
공부 안하던데 왜 잘하는거지
-
무슨 얘기하는지 모르겠네
-
무슨일 있었는지 쭉 요약해주는 분 500덕 30분까지 제일 상세히 설명해주는 1분께 드림.
-
옛날 유저신가요 1
처음 들어보네요 반응 왤캐 뜨거움
-
다다음주부터 과외만 주 14시간 학원은 주 19시간 빨리 사직서 내야하는데 하아
-
25를 그렇게 내고 26을 불로 안낸단게 말이안ㄷ
-
조용하면 커뮤가 아니긴 해
-
좋다
-
비상교육 교과서에는 아예 없네 원래 직접적으로 언급은 안해도 문제로는 있던데
-
네.. 18
-
오늘 산거 10
냄새 ㅆㅅㅌㅊ
-
우우
-
자라고 욕해줘요 9
왜안잠 얘
미분해야겠네
어캐푸는거야
a[n] = 2^(1/n²) + 3^(1/n²) + ... 2^(1/n)
∫[1, 2ⁿ] x^(1/n²) dx ≤ a[n] ≤ ∫[2, 2ⁿ+1] x^(1/n²) dx
{1 - 1/(n² + 1)} (2^(1/n + n) - 1) = P[n] ≤ a[n]
≤ {1 - 1/(n² + 1)} ((2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)) = Q[n]
ln(P[n])/n = ln{1 - 1/(n² + 1)}/n + ln{2^(1/n + n) - 1}/n
lim(n→∞) ln(P[n])/n = lim(n→∞) ln{2^(1/n + n) - 1}/n
= lim(n→∞) [ln{2^(1/n + n) - 1}/ln{2^(1/n + n)}] × [ln{2^(1/n + n)}]/n
= lim(n→∞) (1/n² + 1)ln2 = ln2
ln(Q[n])/n = ln{1 - 1/(n² + 1)}/n + ln{(2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)}/n
lim(n→∞) ln(Q[n])/n = lim(n→∞) ln{(2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)}/n
= lim(n→∞) ln{2^(1/n² + 1)}/n + ln{((2ⁿ + 1)/2)^(1/n² + 1) - 1}/n
= lim(n→∞) ln{2^(1/n² + 1)}/n
+ [ln{((2ⁿ + 1)/2)^(1/n² + 1) - 1}/ln{((2ⁿ + 1)/2)^(1/n² + 1)}]
× [ln{((2ⁿ + 1)/2)^(1/n² + 1)}]/n
= lim(n→∞) (1/n³ + 1/n)ln2 + (1/n³ + 1/n)(ln(2ⁿ + 1) - ln2)
= lim(n→∞) (1/n³ + 1/n)ln(2ⁿ + 1)
= lim(n→∞) {ln(2ⁿ + 1)/ln(2ⁿ)} × ln(2ⁿ)/n × (1/n² + 1)
= ln2
lim(n→∞) ln(P[n])/n = lim(n→∞) ln(Q[n])/n = ln2
∴ lim(n→∞) a[n] = ln2
적분을 이용한 풀이도 있네요ㄷㄷㄷㄷ
https://orbi.kr/00071716950
위 문제에서 사용했었던 방식으로 풀어봤습니다
혹시 정석적인 풀이는 뭔가요?
적어주신 풀이가 정석적인 풀이입니다 :)
아 상합은 2로 해서 조절하나 했는데 그냥 이게 정석이군요. 근데 lim x->inf 저 식은 없어도 풀 수 있지 않나요?
ln(2^n-1)/n 극한을 가장 쉽게 처리할만한 극한을 주었습니다 :)
이런 문제들도 많이 풀면 금방 풀게 될까요? 이거도 처음에 식조작 뻘짓을 하긴 했는데ㅠ푸는 데만 거의 20~30분 들어서
'경시'용 문제이기 때문에 오래 걸릴수 밖에 없는 문제라 봅니다! 경시용 문제의 특징이 '발상'이기 때문에 오래 걸린다고 해서 너무 신경쓰실 필요는 없을 듯 합니다!