미적분 문제 (2000덕)
게시글 주소: https://orbi.kr/00071758284
첫 풀이 2000덕 드리겠습니다!
(+자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해대학갈사람들은당연히빼고계산하는거지.. 난일단못감
-
ㅈㄱㄴ
-
렌즈끼고 알 없는 안경 끼니까 친구가 알 없는거 바로 알아보던데 ㅋㅋㅋ 티나나
-
오르비최저학력은나구나 21
ㄹㅇ..
-
멀 어떡해 그냥 발뺌하면되는거지
-
흠
-
잘자 아기들아 3
엉아 자러 간다잉
-
다시금 떠올리게되네
-
우울하다 1
지금 건대 높공 재학 중인데 반수 관련해서 부모님이랑 의견이 안 맞았어서......
-
사문 자작 3
-
진사람 삭발하고 인증하기 ㅇㅇ
-
혀 닦다가 토함 11
ㅜㅜ
-
나 언제 죽음? 4
하 힘들어 ㅠ
-
1회 62점 2회 86점
-
어림도 없지 시발
-
윤사 기출 1
윤리와 사상 마더텅은 끝냈는데 다음으로 임정환쌤의 임팩트를 할까요? 아니면 현돌의 기시감을 할까요?
-
으흐흐
-
난 내일 피파만 팔까 14
팀 갖다 팔까
-
공부용으로 기출지문분석 / 해설집기능만들어봤음요 여기서 더 상세하게 모르는거도...
-
진짜 송도 기숙사에서 으챠으챠 팟팟 쭈왑쭈왑 하나요 8
절실합니다 답변 부탁드려요
-
기철햄 들으면 개씹좆노베여도 3등급까지 떠먹여주는데 ㄹㅇ.. 홍보를 안해서 그런건가
-
잘자 7
ㅎㅎ
-
근데안되는거암
-
오노추 4
노엘 피처링 너무너무너무 좋고
-
님드라! 14
한 며칠정도 과탐만 해보는거 어때! 이거 감 좀 잡고싶어... 맨날 개념도 까먹고..
-
올해 초에 오르비 뒤집었다가 탈릅한사람 아닌가
-
그낭 하루종일 놀아버렸어 얼불춤 좀만 더하다 자야지
-
n제 여러권 추천해주시면 감사하겠습니다..
-
얼굴 형이나 하관이 얄쌍한게 외모에 미치는 영향이 큼? V라인이라고하죠
-
먼저 자야겠네요 9
잘자요
-
과연 내년에 입학하고서 연뽕이 얼마만에 빠질까.
-
수학 풀이에 관하여 12
자기 맞는 풀이대로 푸세요 다만, 남(주변이든, 강사, 교사 등 선생님이든..)...
-
공부 안하던데 왜 잘하는거지
-
무슨 얘기하는지 모르겠네
-
무슨일 있었는지 쭉 요약해주는 분 500덕 30분까지 제일 상세히 설명해주는 1분께 드림.
-
옛날 유저신가요 1
처음 들어보네요 반응 왤캐 뜨거움
-
다다음주부터 과외만 주 14시간 학원은 주 19시간 빨리 사직서 내야하는데 하아
-
25를 그렇게 내고 26을 불로 안낸단게 말이안ㄷ
-
조용하면 커뮤가 아니긴 해
-
좋다
-
비상교육 교과서에는 아예 없네 원래 직접적으로 언급은 안해도 문제로는 있던데
-
네.. 18
-
오늘 산거 10
냄새 ㅆㅅㅌㅊ
-
우우
임용기출인가
코 풀었는데 20덕만주세요
100덕주는츤데레뭐임
{f(x)}²=g(x)라 하자
0≤g(x)≤M², g'(x)≥2cosx
이때 g(x)=2sinx+2, M≥2라 한다면, g(x)는 주어진 조건을 만족하면서 발산하는 함수이다
'f(x)가 수렴한다면, g(x)는 수렴한다'가 참임은 자명
이의 대우 역시 참이므로, f(x)는 발산함
실례 하나만 찾는 것으로 답을 결정시키는건 힘들 것 같습니다ㅠ
생각해보니 이건 발산할 수도 있다는 증명이지 발산한다는 증명이 아니네요
그럼 항상 발산한다고 증명하라는 건가요
단조수렴은 왜 준거지
나앆시
아니 이거 발산이에여? 얼탱
수렴하는 g(x)가 있다고 가정하자
수렴한다면, lim g(x+1/2)-lim g(x)=0
평균값 정리를 만족하는, 즉 g'(t)≈0을 만족하는 t가 범위 내에 항상 존재해야 하지만, 그렇지 않으므로 모순, 수렴하는 g(x)는 존재하지 않는다
따라서 g(x)는 발산하며, f(x)는 발산한다
생각지도 못한 간결한 풀이네요..!
수열 a_n = f(2npi+3pi/2), b_n = f((2n+1)pi+3pi/2)에 대해 a_n, b_n은 각각 유계이고( |f(x)|<=M ) 증가하므로(ff’ > cos에서 양변 2pi 간격으로 적분하면 우변 0) 극한 L, L’으로 수렴. 이때 b_n-a_n도 수렴하고 b_n-a_n >= (cosx 2n+3/2파이에서 2n+1+3/2파이까지 적분한 거) > 0이므로 L != L’. lim x->inf f(x)가 존재한다 하면, 극한의 성질에서 lim (x -> inf) f(x)=lim n->inf f((2n+3/2)pi) = L이고 같은 논리로 전 극한은 L’과 같아야 하므로 모순.
MCT를 이렇게 사용하실 줄은 몰랐네요..!