[칼럼] 삼.사차함수 비율관계 안외우고 푸는법!!
게시글 주소: https://orbi.kr/00071736822
안녕하세용
제가 공부법 올렸었는데 다들 안믿길래... 걍 스킬이나 올릴게여..ㅋㅋ
여러분 비율관계 엄청 많잖아요? 다른거 외울것도 많은데 언제 이걸 다 외워요
물론 익숙해지면 자동으로 나오는거지만 다들 한번씩 문제 풀 때 어 이거 공식 뭐였지?한적 있으시죠??(나만 그런가..)
쨋든 비율관계는 알면 편하지만 외우기에는 용량이 참 아깝습니다
그래서 한 원리를 소개해드리고자 하는데요, 바로 대치 어둠의 스킬이라 알려진 거리곱입니다!!
거리곱은 크게 3가지로 나눠서 볼 수 있는데, 여기서는 2가지만 소개해드릴게요
(나머지 하나 넓이 거리곱은 나중에 기회 되면;;)
1.
먼저, 일반 거리곱입니다
삼차함수, 사차함수 상관 없고 허근만 안가지면 되요!! 중근도 가능!
다음과 같이 다항함수가 있을 때
함숫값을 찾으려면 기준선을 기준으로(꼭 x축 아니어도 됩니다. 실근 나오게끔 축을 설정하셔도 돼요)
최고차항과 근들과의 거리의 곱을 구하면 됩니다
주의해야할건 중근이면 2번, 3중근이면 3번 곱해주셔야 해요!!
이런 방식을 쓰면 삼차함수에서 극대-극소를 공식 없이 빠르게 구할수 있답니다ㅇㅅㅇ
삼중근 갖는 사차함수에서도 공식 없이 거리 빠르게 구하는거 ㄱㄴ이고요 꼭 그런거 아니더라도 원하는 함숫값을 함수식 없이 그래프만 그리면 나올 수 있게 연습해두는게 좋아여
2.
두번째로, 기울기 거리곱입니다
이건 두가지 버전이 있는데, 첫번째는 근들 중 한 지점에서의 기울기, 두번째는 근이 밝혀지지 않았을 때 임의의
점에서의 기울기에요
첫번째로, 근들 중 한 점에서의 기울기입니다.
근데 이건 일반 거리곱과 메커니즘이 같아요 그래서 1번이 익숙하다면 이것도 문제 없을겁니다
마찬가지로 최고차항의 계수에 그 점을 제외한 나머지 근들까지의 거리를 곱해주면 그 점에서의 기울기가 나와요
이건 1번보단 쓸 일이 많이는 없지만 가끔씩 나와주니 익혀두는 것을 권장합니다여기서 c점에서 기울기를 구하려면, 최고차항 k 곱하기 m곱하기 l+m하시면 되는거죠
두번째로 위에 썼던 기울기 거리곱보단 많이 쓰게 될 일반적인 상황에서 기울기 구하기입니다
여기선, 근이 뭔지 몰라도 극대, 극소인 지점만 알아도 미분계수를 구할 수 있는데요, 주의할 점은 아까와 달리
최고차항을 곱할 때 그냥 곱하는게 아니라 미분 하고 곱해야한다는겁니다
즉, ax^n이면 한번 미분한 na^(n-1)에서의 계수인 na를 곱해야 하는겁니다. 문자로 써서 복잡한거지 간단해요
예를 들어 4x^4이면 16을, -2x^3이면 -6을 곱하면 되는거죠
이걸 편의상 미분후 최고차항 계수 K라 하겠습니다.
그럼 한 지점에서의 미분계수는 K에 극대, 극소인 점들과 구할 지점의 x좌표의 거리들을 곱하면 나옵니다.여기서 r점에서의 미분계수는 3anm이 되는거죠
마무리
사실 왠만한 칼럼글에는 제 자작 문제를 넣으려고 했으나, 거리곱 스킬의 특성 상 예제를 넣기가 그래서 안넣었습니다
거리곱이라는게 문제풀이의 발상에 관한것, 풀이의 방향이 바뀌는 그런거가 아니라 단순히 특정 상황에서
계산을 그래프에서 바로 빠르게 해주는 촉매 역할의 스킬이라서 예제는 따로 넣지 않을게요
+이 거리곱은 제목에서도 말했듯이 삼.사차함수 비례관계를 외우지 않아도 풀리는, 비례관계의 상위버전이라
할 수 있습니다.. 연습하시면 비례관계 안쓰고 이거만 쓸 정도로 유익한 계산 스킬이에요
++다음 칼럼글은 아마 '역함수 미분법 일관되게 풀기'가 되겠습니다
아닐수도 있고
아 까먹었다 이거 부호는 그래프 보면 딱 봐도 +인지 -인지 알테니까 계수 -여도 걍 절댓값 붙여서 값만 계산하고 부호는 나중에 판단하는게 편해요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가,나 모두 읽고 문제 쭉 푸시나요 아니면 (가)읽기 -> (가)단독문제 풀기 ->...
-
아내랑 노는 중 5
-
노래방 가는중 7
으하하
-
님드라 4
배달 음식중에 햄버거처럼 간단한거 이씀? 그냥 햄버거 시킬까
-
자위 중독 7
워딩이 왜 이렇게 웃기지
-
작수 영어 5떠서 n수하는중입니당..ㅜ듣기5개틀… 듣기는 이제 매일하려고합니다 션티...
-
올해 갈 수있으려나
-
아까 알고리즘에 뜨더라구요... 어떻게 알았지
-
후후
-
Be동사 생략하고 ing꼴로 나탈낼 수 있다 들었는데....그리고 맥락상 파악 쉽게...
-
어떻게 다 맞은 지문이 하나도 없냐 계속 하나씩 나가네 짜증나게
-
투데이 뭐임 4
오늘은 방금 들어왔는데 왜 69
-
대략 문닫고 들어가는 점수면 백분위 어느정도 맞아야 가능하죠?ㅠㅠ
-
만들면 안될까 오래된 생각이다
-
어흥
-
급 우울 8
뭐든간에 진전이 없네
-
아예 안 먹으면 밥생각안나는데 간식같은 저녁 믝으니까 계속 먹음
-
난 그냥 사학과 가서 세계각지로 여행다니다가 교사할거 같음
-
2027년 의대열풍으로 인한 사교육 과열로 인해 너도나도 실력없는 강사들이 양산되기...
-
내가 가려는학과를 깠음 공대아니면 ㅂㅅ이라던데 치킨집이나 차리라고 하던데 아
-
ㅈㄱㄴ
-
철학과 갔다고 까이고 그런가요..?
-
질문해주세요 곧 대표로 교육감상 받음 ㅎㅎ
-
젭알
-
나랑 친구할 사람 11
없겠지 뭐
-
13번까지는 수능때처럼 허무하게 쉬운 문제들로 가득함 다들 BL모 많이 관심가져주세요
-
진짜 딱 1. 사학과 2. 철학과 3. 국문학과 였음 문이과 과목 다 두루두루...
-
궁금
-
약간 변형해서 냈었는데 여기서 부분점수 3점 나가서 97점 나옴ㅜㅜ
-
화1 빈집인 거 체감된다… 수학의 1/10도 안 올라옴
-
바꾸길 잘한듯 지구 되게 재밌네
-
ㅋㅋㅋㅋ 개 웃기네
-
쉴래 이제 안해 5
집중도 안되고 걍 쉬자 이거 어떰 애니 안보는데 재미써보임
-
17녀라고 한 다음에 아무 아파트 주소대서 거기로 오라고 함 상대는 40대였음
-
과탐 실모 ㅇㅈ 7
ㅅㅌㅊ ??
-
오르비 여러분들은 어떨게 해결하시나요? 자꾸 비교하게 됩니다
-
무물보 2
-
문학 18분컷내고싶다 작품 제대로 읽고 바로 띡띡띡 딱 선지에서 시간 무한으로 아끼기
-
멘날 듣는 음악만 듣고 맨날 똑같은 장소를 일정한 시간동안 다녀오고 그 안에...
-
수요가 적을까 막말로 킹반인 소양에서 철학보다 세계사가 더 유익하지 않나
-
물리하다보니까 단순암기로 끝낼 수 있는게 많다는 것이 생각보다 좋은거엇음
-
국어 마르고 닳도록 3회독, 수특, 수완, 실모 수학 수능 기출의...
-
이번 여행에선 후쿠오카, 구마모토, 가고시마, 미야자키까지 방문한 도시마다...
-
김성호 현강 0
김성호 미적 현강 대치동 수강생 몇명정도 인가요
-
비키니 4
너 저리 안 '비키니'?? ㅋ
-
유튜브에서 종종 나오길래 함 복용해볼까 고민중...
첫번째 댓글의 주인공이 되어보세요.