[칼럼] 삼.사차함수 비율관계 안외우고 푸는법!!
게시글 주소: https://orbi.kr/00071736822
안녕하세용
제가 공부법 올렸었는데 다들 안믿길래... 걍 스킬이나 올릴게여..ㅋㅋ
여러분 비율관계 엄청 많잖아요? 다른거 외울것도 많은데 언제 이걸 다 외워요
물론 익숙해지면 자동으로 나오는거지만 다들 한번씩 문제 풀 때 어 이거 공식 뭐였지?한적 있으시죠??(나만 그런가..)
쨋든 비율관계는 알면 편하지만 외우기에는 용량이 참 아깝습니다
그래서 한 원리를 소개해드리고자 하는데요, 바로 대치 어둠의 스킬이라 알려진 거리곱입니다!!
거리곱은 크게 3가지로 나눠서 볼 수 있는데, 여기서는 2가지만 소개해드릴게요
(나머지 하나 넓이 거리곱은 나중에 기회 되면;;)
1.
먼저, 일반 거리곱입니다
삼차함수, 사차함수 상관 없고 허근만 안가지면 되요!! 중근도 가능!
다음과 같이 다항함수가 있을 때
함숫값을 찾으려면 기준선을 기준으로(꼭 x축 아니어도 됩니다. 실근 나오게끔 축을 설정하셔도 돼요)
최고차항과 근들과의 거리의 곱을 구하면 됩니다
주의해야할건 중근이면 2번, 3중근이면 3번 곱해주셔야 해요!!
이런 방식을 쓰면 삼차함수에서 극대-극소를 공식 없이 빠르게 구할수 있답니다ㅇㅅㅇ
삼중근 갖는 사차함수에서도 공식 없이 거리 빠르게 구하는거 ㄱㄴ이고요 꼭 그런거 아니더라도 원하는 함숫값을 함수식 없이 그래프만 그리면 나올 수 있게 연습해두는게 좋아여
2.
두번째로, 기울기 거리곱입니다
이건 두가지 버전이 있는데, 첫번째는 근들 중 한 지점에서의 기울기, 두번째는 근이 밝혀지지 않았을 때 임의의
점에서의 기울기에요
첫번째로, 근들 중 한 점에서의 기울기입니다.
근데 이건 일반 거리곱과 메커니즘이 같아요 그래서 1번이 익숙하다면 이것도 문제 없을겁니다
마찬가지로 최고차항의 계수에 그 점을 제외한 나머지 근들까지의 거리를 곱해주면 그 점에서의 기울기가 나와요
이건 1번보단 쓸 일이 많이는 없지만 가끔씩 나와주니 익혀두는 것을 권장합니다여기서 c점에서 기울기를 구하려면, 최고차항 k 곱하기 m곱하기 l+m하시면 되는거죠
두번째로 위에 썼던 기울기 거리곱보단 많이 쓰게 될 일반적인 상황에서 기울기 구하기입니다
여기선, 근이 뭔지 몰라도 극대, 극소인 지점만 알아도 미분계수를 구할 수 있는데요, 주의할 점은 아까와 달리
최고차항을 곱할 때 그냥 곱하는게 아니라 미분 하고 곱해야한다는겁니다
즉, ax^n이면 한번 미분한 na^(n-1)에서의 계수인 na를 곱해야 하는겁니다. 문자로 써서 복잡한거지 간단해요
예를 들어 4x^4이면 16을, -2x^3이면 -6을 곱하면 되는거죠
이걸 편의상 미분후 최고차항 계수 K라 하겠습니다.
그럼 한 지점에서의 미분계수는 K에 극대, 극소인 점들과 구할 지점의 x좌표의 거리들을 곱하면 나옵니다.여기서 r점에서의 미분계수는 3anm이 되는거죠
마무리
사실 왠만한 칼럼글에는 제 자작 문제를 넣으려고 했으나, 거리곱 스킬의 특성 상 예제를 넣기가 그래서 안넣었습니다
거리곱이라는게 문제풀이의 발상에 관한것, 풀이의 방향이 바뀌는 그런거가 아니라 단순히 특정 상황에서
계산을 그래프에서 바로 빠르게 해주는 촉매 역할의 스킬이라서 예제는 따로 넣지 않을게요
+이 거리곱은 제목에서도 말했듯이 삼.사차함수 비례관계를 외우지 않아도 풀리는, 비례관계의 상위버전이라
할 수 있습니다.. 연습하시면 비례관계 안쓰고 이거만 쓸 정도로 유익한 계산 스킬이에요
++다음 칼럼글은 아마 '역함수 미분법 일관되게 풀기'가 되겠습니다
아닐수도 있고
아 까먹었다 이거 부호는 그래프 보면 딱 봐도 +인지 -인지 알테니까 계수 -여도 걍 절댓값 붙여서 값만 계산하고 부호는 나중에 판단하는게 편해요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
실시
-
으하하하하하 10
으하하하하하하하
-
진짜몰라서 물어봄 정시
-
사문 난이도 8
물리에서 사문으로 바꾸고 진도나가고있는데 사문킬러는 도표?라던데 얼마나 어려워요?...
-
여자 만나는 자리에는 그래서 렌즈끼고 가는데
-
그래서 재수 해서 설경 갈려구요 정치인 하고 싶음
-
저는 조종사 항공교통관제사 마술사
-
생명 풀거 0
자이 수특 상크스 프로모터 끝냈고 16모고 추론형모고 풀고있는데 강의올라오는거...
-
이렇게 반수 고민하며 자학하고 있는것보단 뭐라도 하는게 낫죠 반수를 안한다하더라도...
-
104만원 많은 건가요?
-
딱 1시간만 2
문제 더 풀게요..
-
글 쓰는 걸 거의못봄
-
자기가 갖고있는 건 원래 있었던 거 같고 너무 당연히 내것같음 그리고 결핍을 끊임없이 지향함
-
중딩때는 마음속에 담아두는 것 없이 화나면 화난 거 슬프면 슬픈거 서운하면 서운한거 다 말하고 다님
-
기하러고 3모 14 15 21 22 26 30틀 인데 입문N제 할지 실전개념할지...
-
시험을죽인다 10
공부를안하는나를죽이는ㄱ맞을지도
-
와 진짜 3
공부법 물어보고 했던 사람이 리플리일수도 잇다는게 무섭네
-
오르비함
-
그냥 요즘 힘들어유, 수1 시대 강사컨이랑 인강n제 하나 제대로 못쳐내는거같은 느낌...
-
올해 연세대 목표러 하는 재수생입니다 이번 해부터 연대 정시에도 교과반영 하자나요...
-
자야지 이제
-
배고파서깼다 4
냉장고 뒤지다가 멧돼지로 오인사격받는거 아니겟지
-
나름 열심히 먹었다고 생각했는데 4개밖에 안 먹은거임...
-
리플리 증후군? 9
비갤 보다가 리플리 증후군 ㅈㄴ 많다는걸 깨달음
-
송도생활 한달차 후기. 12
아는사람은 많이 생겼는데 진짜 친해질 사람은 아직 못찾음,, 그래도 후보는 몇명...
-
국어: 김승리 풀커리 따라가는중..현tim수강&매월승리&kbs하는 중입니다. 국어는...
-
미적은 만들기 개싫네 14
공통은 재미라도 있는데...
-
졸려 6
잠와
-
뭔가요? 이감 상상 한수 바탕 중에서요
-
뭉탱이 2
-
여캐일러 투척. 1
-
지금 매기분은 다풀었는데 다른 문제집으로도 한번 더 풀어보고싶어서요 추천좀..
-
아 4
..
-
스블 공부법 1
하루에 2강씩 공통 번갈아가면서 들어서 6모전에 끝낼려고 하는데 쌤이 알려주시는걸...
-
다이어트 도시락
-
X랄 X스 X위 3
모랄레스 증위
-
잘자요 4
-
남캐일러 투척. 12
음 역시귀엽군
-
풀어줄사람 구함
-
2시에 잘까 5
5시간만 자면 적당하지않을까
-
안녕히 9
주무
-
11311 11211 12231 작년 69수능입니다 언미화생이에요 올해 25이고...
-
수능날 10번 혹은 미적 26번에 슬쩍 던져주면 올붕이들 멘탈나가서 점심 못먹겠네...
-
내가 뭘 그리 잘못했냐 이정도면 그냥 에타가 나를 억까하는거임 눈썹도 추고털로...
-
이거 이외에도 수열킬러 등등 수1에서 되게 어려운 문제들 많음 평가원이 수1을...
-
출제자가 ㅅㅇㅅ를 숨김 12
올해 수특 수학 중 제일 핫한 문제 같음 SAS합동 입갤 도형에서 학생들 제초하기...
-
진짜모름 예전에 같은반 애가 이원준t가 구조독해 끝판왕이라던데 그럼 구조독해 좋은거...
-
N제 어떤거 푸는게 좋을까요 기출은 최근에 끝내서 텀 두고 6모 이후에 다시 풀려고요
-
현역으로 정시하신 분들 10
학교 수업때 자습하셨나요? 수업들었나요? 쌤들은 자습하면 좀 눈치주시는데 어떡하죠 ㅜ
첫번째 댓글의 주인공이 되어보세요.