Whitehead Torsion
게시글 주소: https://orbi.kr/00071714315
Motivation: "그들의 대화" 에서 최근에 나오는 핵심 용어들 중 하나가 Whitehead torsion이라는 것인데, 이러한 것을 고려하는 이유에 대해서 먼저 설명하기로. 모든 것의 기원은 소위 "cobordism theory"에 기반을 함: Let $M$ and $N$ be smooth closed manifolds of dimension $n$. An \textit{$h$-cobordism} from $M$ to $N$ is a compact smooth manifold $B$ of dimension $(n+1)$ with boundary $\partial B \cong M\coprod N$ having the property that the inclusion maps from $M$ and $N$ to $B$ are homotopy equivalences. If $n\geq 5$ and the manifold $M$ is simply connected, then the Smale's $h$-cobordism theorem says that $B$ is diffeomorphic to a product $M\times [0,1]$ (and, in particular, $M$ is diffeomorphic to $N$).
다시 말해서, cobordism은 두 다양체 M,N을 자연스럽게 interpolate하는 것을 말함. 여기서 $h$는 homotopy를 말하고, 그 이유는 up to homotopy로 interpolate을 했기 때문. 5차원 이상에서는 이것이 어떤 면에서 ``trivial'' 하다는 것을 말함. Smale이 이 정리를 이용해서 5차원 이상에서의 Poincare Conjecture를 풀었음 (예에에전에 한번 이거 관련 글 썼던 것 같음).
이러한 좋은 이유에 의해서 cobordism theory를 not simply connected인 경우에는 어떻게 사용할 수 있을까 사람들이 고심을 하고, 그렇게 나온 것이 s-cobordism theory임. 이것을 좀 더 자세히 설명하기 위해서는 몇몇 정의들이 필요함:
Definition. Let $X$ be a finite simplicial complex. Suppose that there is a simplex $\sigma\subset X$ containing a face $\sigma_0\subset\sigma$ such that $\sigma$ is not contained in any larger simplex of $X$, and $\sigma_0$ is not contained in any larger simplex other than $\sigma$. Let $Y\subset X$ be the subcomplex obtained by removing the interiors of $\sigma$ and $\sigma_0$. Then the inclusion $\iota:Y\hookrightarrow X$ is a homotopy equivalence. In this situation, we will say that $\iota$ is an \textit{elementary expansion}. Note that $Y$ is a retract of $X$; a retraction $X$ onto $Y$ will be called the \textit{elementary collapse}.
Definition. Let $f:Y\to X$ be a map between finite simplicial complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition of elementary expansions and elementary collapses.
모든 compact smooth manifold는 PL 이기 때문에 finite simplicial complex structure를 갖게 됨. 따라서, smooth manifold의 경우에는 simple homotopy equivalence라는 것을 이야기할 수 있음.
s-cobordism theorem. Let $B$ be an $h$-cobordism theorem between smooth manifolds $M$ and $N$ of dimension $\geq 5$. Then $B$ is diffeomorphic to a product $M\times[0,1]$ if and only if the inclusion map $M\hookrightarrow B$ is a simple homotopy equivalence.
이제 이 s-cobordism theorem을 적용하기 위해서는 언제 homotopy equivalence of smooth manifolds $f:X\to Y$가 simple homotopy equivalence인지 알아내는 것. 이걸 Whitehead가 해결했는데, 각각의 homotopy equivalence $f:X\to Y$에 대해서, 어떤 algebraic invariant $\tau(f)$ called the \textit{Whitehead torsion} of $f$ 라고 하고, 이 torsion은 \textit{Whitehead group} of $X$라고 불리는 특정 abelian group $\mathrm{Wh}(X)$에 존재함. 이 torsion이 정확히 simple homotopy equivalence의 obtruction임. 다시 말해서, $\tau(f)$ vanishes if and only if $f$ is a simple homotopy equivalence.
이제 이 Whitehead torsion이 구체적으로 무엇인지 알아보기로. 먼저 앞에서 정의한 simple homotopy equivalence의 정의를 조금 더 구체적으로 적어봄.
Construction 1. Let $D^n$ denote the closed unit ball of dimension $n$ and let $S^{n-1} = \partial D^n$ denote its boundary. We will regard $S^{n-1}$ as decomposed into hemispheres $S^{n-1}_-$ and $S^{n-1}_+$ which meet along the ``equator'' $S^{n-2} = S^{n-1}_-\cap S^{n-1}_+$.
Let $Y$ be a CW complex equipped with a map $f:(S^{n-1}_-,S^{n-2})\to (Y^{n-1},Y^{n-2})$. Then the pushout $Y\coprod_{S^{n-1}_-}D^n$ has the structure of a CW complex which is obtained from $Y$ by adding two more cells: an $(n-1)$-cell given by the image of the interior of $S^{n-1}_+$ (attached via the map $f|_{S^{n-2}}:S^{n-2}\to Y^{n-2}$) and an $n$-cell given by the image of the interior of $D^n$ attached via the map
$$S^{n-1} = S^{n-1}_-\coprod_{S^{n-2}}S^{n-1}_+\to Y^{n-1}\coprod_{S^{n-2}}S^{n-1}_+.$$
In this case, we will refer to the CW complex $Y\coprod_{S^{n-1}_-}D^n$ as an \textit{elementary expension} of $Y$, and to the inclusion map $Y\hookrightarrow Y\coprod_{S^{n-1}_-}D^n$ as an \textit{elementary expansion}.
The hemisphere $S^{n-1}_-\subset D^n$ is a (deformation) retract of $D^n$. Composition with any retraction induces a (celluler) $c:Y\coprod_{S^{n-1}_-}D^n\to Y$, which we will refer to as an \textit{elementary collapse}. Note that the homotopy class of $c$ does not depend on the choice of retraction $D^n\to S^{n-1}_-$.
Definition 2. Let $f:X\to Y$ be a map of CW complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition
$$X = X_0\xrightarrow{f_1}X_1\xrightarrow{f_2}X_2\to\cdots\xrightarrow{f_n}X_n = Y,$$
where each $f_i$ is either an elementary expansion or an elementary collapse.
We say that two finite CW complexes are \textit{simple homotopy equivalent} if there exists a simple homotopy equivalence between them.
Example. Let $X$ and $Y$ be finite CW complexes and let $f:X\to Y$ be a continuous map. We let $M(f) = (X\times[0,1])\coprod_{X\times\{1\}}Y$ denote the mapping cylinder of $f$. If $f$ is a celluler map, then we can regard $M(f)$ as a finite CW complex (taking the cells of $M(f)$ to be the cells of $Y$ together with cells of the form $e\times\{0\}$ and $e\times(0,1)$, where $e$ is a cell of $X$). The inclusion $Y\hookrightarrow M(f)$ is always a simple homotopy equivalence: in fact, it can be obtained by a finite sequence of elementary expansions which simultaneously add pairs of cells $e\times\{0\}$ and $e\times(0,1)$ (where we add cells in order of increasing dimension).
Note that the map $f$ is homotopic to a composition
$$X\simeq X\times\{0\}\xrightarrow{\iota}M(f)\xrightarrow{r}Y,$$
where $r$ is the canonical retraction from $M(f)$ onto $Y$ (which can be obtained by composing a finite sequence elementary collapses). It follows that $f$ is a simple homotopy equivalence if and only if $\iota$ is a simple homotopy equivalence. Consequently, when we are studying the question of whether or not some map $f$ is a simple homotopy equivalence, there is no real loss of generality in assuming that $f$ is the inclusion of a subcomplex.
Rmk. Celluler approximation theorem says that any continuous map between CW complexes can be homotoped to be a celluler map. In particular, the above example holds for general continuous map $f$.
Simple homotopy equivalence는 homotopy equivalence인 것은 눈으로 쉽게 확인할 수 있다. s-cobordism theorem을 적용하기 위해서, 우리는 그 역이 필요하다.
Question. Let $f:X\to Y$ be a homotopy equivalence between finite CW complexes. Is $f$ a simple homotopy equivalence? If not, how can we tell?
앞서 말했듯이, 이 질문에 대한 대답은 정확히 Whitehead torsion. 이걸 만들기 위해서 먼저 몇몇 정의들이 필요함. 지금까지는 상당히 자명한 것들만 나왔는데 지금부터는 약간 익숙치 않은 것들이 등장하기 시작함.
Definition. Let $R$ be a ring (not necessarily commutative). For each integer $n\geq 0$, we let $\mathrm{GL}_n(R)$ denote the group of automorphisms of $R^n$ as a right $R$-module. Every automorphism $\alpha$ of $R^n$ extends to an automorphism $\alpha\oplus 1_R$ of $R^{n+1}$; this construction yields inclusions
$$\mathrm{GL}_1(R)\hookrightarrow\mathrm{GL}_2(R)\hookrightarrow\mathrm{GL}_3(R)\hookrightarrow\cdots.$$
We let $\mathrm{GL}_\infty(R)$ denote the direct limit of this sequence, and we define $K_1(R)$ to be the abelianization of $\mathrm{GL}_{\infty}(R)$.
Remark. 자 이 construction이 뭔가 natural 하면서도, 한편으로는 좀 어색한데, 만약 $R$이 commutative ring이라면, determinant function
$$\det:\mathrm{GL}_n(R)\to R^\times$$
이 group homomorphism을 줌. 자명히 det은 위의 direct system과 compatible 하기 때문에, direct limit으로 pass가 가능하고, $\det:K_1(R)\to R^\times$ 라는 group homomorphism을 induce함. 만약 $R$이 field 이거나 $\Bbb Z$ 라면, 이 det은 isomorphism이라는 것을 알 수 있음. (하지만 우리의 경우에 $R$은 group ring $\Bbb ZG$라 이 경우는 아님.)
Let $R$ be a ring. A \textit{based chain complex over $R$} is a bounded chain complex of $R$-modules
$$\cdots F_n\xrightarrow{d}F_{n-1}\xrightarrow{d}F_{n-2}\to\cdots,$$
together with a choice of unordered basis for each $F_m$ (so that each $F_m$ is a free $R$-module). In this case, we let $\chi(F_\ast)$ denote the sum $\sum(-1)^mr_m$, where $r_m$ denotes the cardinality of the (chosen) basis of $F_m$. We will refer to $\chi(F_\ast)$ as the \textit{Euler characteristic} of $(F_\ast,d)$.
Remark. If $R$ is a nonzero commutative ring, then the Euler characteristic $\chi(F_\ast)$ is independent of the choice of basis of the modules $F_\ast$. For a general noncommutative ring $R$, this need not be the case.
Let $(F_\ast,d)$ be a based chain complex over $R$ which is \textit{acyclic}, i.e., the homology of $(F_\ast,d)$ vanishes. Since each $F_m$ is a free $R$-module, it then follows that the identity map $1:F_\ast\to F_\ast$ is chain homotopic to zero, i.e., there exists a map $h:F_\ast\to F_{\ast+1}$ satisfying $dh+hd = 1$. We let $F_{\text{even}}:=\bigoplus_n F_{2n}$ and $F_{\text{odd}}:=\bigoplus_{n}F_{2n+1}$.
Lemma. In the above setting, the map $d+h:F_{\text{even}}\to F_{\text{odd}}$ is an isomorphism. $\square$
The specification of a basis for each $F_m$ determines isomorphisms
$$F_{\text{even}}\simeq R^a,\quad F_{\text{odd}}\simeq R^b$$
for some integers $a,b\geq 0$, which are well-defined up to the action of permutation matrices.
Definition. Let $\tilde{K}_1(R)$ denote the quotient of $K_1(R)$ by the subgroup $\langle \pm 1\rangle$. If $(F_\ast,d)$ is an acyclic based complex with $\chi(F_\ast) = 0$, we define the \textit{torsion} of $(F_\ast,d)$ to be the image of $d+h\in\mathrm{GL}_a(R)$ under the map $\mathrm{GL}_a(R)\to\mathrm{GL}_\infty(R)\to\tilde{K}_1(R)$. It can be shown that this definition does not depend on the ordering of the basis elements of $F_\ast$. We will denote the torsion of $(F_\ast,d)$ by $\tau(F_\ast)$.
Lemma. In the above definition, the torsion $\tau(F_\ast)$ is well-defined, i.e., does not depend on the choice of nulhomotopy $h$. $\square$
Definition. Let $f:X_\ast\to Y_\ast$ be a map of chain complexes over a ring $R$. The \textit{mapping cone of $f$} is defined to be the chain complex
$$C(f)_\ast = X_{\ast -1}\oplus Y_\ast$$
with differential $d(x,y) = (-dx,f(x)+dy)$. Note that if $X_\ast$ and $Y_\ast$ are based complexes, then we can regard $C(f)_\ast$ as a based complex (where we fix some convention for how our bases should be ordered).
Suppose that we have $\chi(X_\ast,d) = \chi(Y_\ast,d)$ and that $f$ is a \textit{quasi-isomorphism}, i.e. it induces an isomorphism on homology. Then $\chi(C(f)_\ast,d) = 0$ and $C(f)_\ast$ is acyclic. We define the \textit{torsion of $f$} to be the element $\tau(f) = \tau(C(f)_\ast,d)\in K_1(R)$.
이제 Whitehead torsion을 정의할 것인데, 정의의 동기를 주는 example을 먼저 보기로 함.
Example. Let $(F_\ast,d)$ be an acyclic based complex with $\chi(F_\ast) = 0$, and let $f$ be the identity map from $F_\ast$ to itself. Then the mapping cone $C(f)_\ast$ has an explicit nulhomotopy given by $(x,y)\mapsto(y,0)$. Identify $C(f)_{\text{even}}$ and $C(f)_{\text{odd}}$ with $F_\ast$, so that $d+h$ is given by
$$(x,y)\mapsto (y-dx,x+dy).$$
This map is given by a permutation matrix modulo the filtration by degree, so we have $\tau(f) = 1\in\tilde{K}_1(R)$.
Suppose $X,Y$ are finite CW complexes and that we are given a homotopy equivalence $f:X\to Y$. For simplicity, we assume that $X,Y$ are connected. We fix a base point $x\in X$ and set $G =\pi_1(X,x)\simeq \pi_1(Y,f(x))$. Let $\tilde{Y}$ be a universal cover of $Y$ and let $\tilde{X} = X_{\times_Y}\tilde{Y}$ be the corresponding universal cover of $X$, so that $G$ acts on $\tilde{X}$ and $\tilde{Y}$ by deck transformations. Let us further assume that $f$ is a celluler map. Then $f$ induces a map of cellular chain complexes
$$\lambda:C_\ast(\tilde{X};\Bbb Z)\to C_\ast(\tilde{Y};\Bbb Z).$$
Note that we can regard $C_\ast(\tilde{X},\Bbb Z)$ and $C_\ast(\tilde{Y};\Bbb Z)$ as chain complexes of free $\Bbb Z[G]$-modules, with basis elements in bijection with the cells of $X$ and $Y$ respectively. Since $f$ is a homotopy equivalence, the map $\lambda$ is a quasi-isomorphism. We may therefore consider the torsion $\tau(\lambda)\in\tilde{K}_1(\Bbb Z[G])$. However, it is not well-defined: in order to extract an element of $C_\ast(\tilde{X};\Bbb Z)$ from a cell $e\subset X$, we need to choose a cell of $\tilde{X}$ lying over $e$ (which is ambiguous up to the action of $G$) and an orientation of the cell $e$ (which is ambiguous up to a sign). This motivates the following:
Definition. Let $G$ be a group. The \textit{Whitehead group} $\mathrm{Wh}(G)$ of $G$ is the quotient of $K_1(\Bbb Z[G])$ by elements of the form $[\pm g]$, where $g\in G$.
If $f:X\to Y$ is a celluler homotopy equivalence of connected finite CW complexes, we define the \textit{Whitehead torsion} $\tau(f)\in\mathrm{Wh}(G)$ to be the image in $\mathrm{Wh}(G)$ of the torsion of the induced map
$$\lambda:C_\ast(\tilde{X};\Bbb Z)\to C_\ast(\tilde{Y};\Bbb Z).$$
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[칼럼] '수능을 수능답게, 수학을 쉽게 보는 방법.' - '수학학습법' 3
'수능을 수능답게, 수학을 쉽게 보는 방법.' - '수학학습법' 안녕하세요. 수능을...
-
작수 성적입니다 국어(화법과 매체) : 99점 수학(기와 통계) : 95점 영어 :...
-
이게 정답률 14%? 진지하게 지금은 1페에 있어도 괜찮을듯
-
미적 가성비가 ㅈ구림 11
8문제 맞추는데 공부량은 공통 그이상 그이상임 아 ㅋㅋ 근데 재밌음
-
생윤 사문으로 사탐런 하려는데 사문은 저랑 잘 맞는데 생윤은 좀 애매해서.. 그냥...
-
미적수분감 스텝2: 1주 해서 반쯤 함 수1수분감: 3시간컷 문제수 반이긴 한데 그래도 이건좀
-
문학은 kbs 독서는 앱스키마 들어도 될까요 +올오카 독서 문학 다 듣고 수특 수완도 할예정입니다
-
1,2월 공부 안한 내 잘못이지 뭘...
-
26수능부턴 2
현역이랑 재수생이랑 시험을 따로 봐야 한다고 생각해요... 아님 현역 할당제라던가 으흐흐
-
아
-
내신문제인데 한시간 고민했는데 걍 문제이해가안감;;
-
맞팔구 6
네
-
평행하게만 쓰면 잘 쓰는 거임 이 게 씨 면 게 필 렇 글 쓰 그 악
-
고석용 11% 배기범 3% 오지훈 0% 기간 만료됨뇨
-
2027년부터 9급 공무원 한국사 시험, 검정시험으로 대체 4
오는 2027년부터 공무원 9급 공채 필기시험 공통과목인 한국사 과목은...
-
자유 정의 진리 2
자정진
-
그래서 열기만 함ㅋㅋㅋ
-
[한대산 영어 연구소] 2026학년도 InDePTh 실모 3회분 (Season 1) 배포 2
안녕하십니까. 한대산 영어 연구소입니다. 이제 본격적으로 2026학년도가 시작이...
-
근데 유빈이 타 강사견제하려고 올리는 강사도 있을거 같은데 5
유독 몇명만 빨리 올라오는 느낌임 올해 ㅈㄴ 안 올라오는데 댓글 알바써서 욕하는데...
-
담요단 글씨체 ㅇㅈ 19
-
사탐 공대 폐지되면 23
지1지2할듯 물리는 오지훈이 안 가르치고 화학은 ...아시죠? 생명은 유전에 벽...
-
국어 과외쌤 6
국어 화상과외 받으려는데 금액은 둘다 똑같은데 이런 상황에서는 누구 받을 거 같나요...
-
징징거리고싶음 8
징징징징
-
이건 아니잖아요... 걍 필기노트만 보고 기출분석해야겠네
-
그래야 실수들이 사탐 안 치고 과탐 치지
-
40이 딱 적정한 사탐 1컷 같은데
-
사문이랑 비교하면 만표한 78은 줘야 합당하겠는데
-
얘네 머리짜르는데 왜이렇게 많이 받냐 주기랑 짜르는 비용 알려줘요
-
로스쿨 갈때 1
사진 안중요하죠? 학적부 사진 고딩때 찍은거라 ㅠ 아예 사진이 필요없나요
-
고3이랑 차이 심하려나
-
고민되면 풀지마셈 고민했다는거 자체가 쓸데없어보였는데 남들이 하니까 해야할거같고...
-
배르테르 63번 3
계산 너무 많다..
-
2025.8/A6 A면 4월이나 8월같은데 8월6일까지인가..
-
기숙사가 더 필요하다고 생각되네요
-
어려운거부터 전 5모>7모>10모 3모는 안풀어봐서 잘 모름
-
감사함니다 감사함니다
-
뭔가 한의대 이상은 평생 노력해도 못 갈 거 같은데 8
약대는 뭔가 할 수 있을 거 같단 근자감이 있음
-
Again! 0
확통 공부 ㄱㄱ혓!
-
N수 정당화
-
내일이 금요일이네
-
2019학년도 나형 21번문제 개념만 듣고 바로 풀어서 맞췄는데 혹시 요즘 수능...
-
64468 -> 53433 24 수능 , 25수능입니다. 삼반수 안하면 후회할거같고...
-
염병
-
아 허리아파 0
으으
-
올해 중대 도시공학 쓴 사람 땡잡았구나
-
삼반수 0
13학점인데 어차피 돌아갈 마음도 없고 절대 죽어도 돌아가지는 않을거같아서 금요일...
-
운동 가는거 조오오오오온나 어려움 근데 가서 안뛰쳐나가는게 더 어려움 근데 또 무게...
-
안녕하세요 치과의사만의 커뮤니티 그 이상, 모어덴입니다. 치과대학&치전원 등록...
세줄요약좀
1. 멋진 대화를 하고 있는 사람들 대화에 끼고 싶다
2. 대화에 끼려면 그 사람들이 무슨 말을 하는지 이해해야 한다
3. 따라서 그들의 대화 중에 나오는 용어들을 먼저 알아볼까 고민중이다