[칼럼] 기하 뉴비들을 위한 안내서 Vol.1 (Feat. 베르테르 19번)
게시글 주소: https://orbi.kr/00071670622
부제 - 문제를 "다각도로" 바라보셔야 합니다
안녕하세요, 의대왔다고 입니다.
오늘 칼럼은 기하 문제를 다각도로 바라보고 해결하는 방법에 대해 다뤄볼까 합니다.
기하라는 과목 자체가 선택자 수가 적기도 하고, 그럼에도 기하라는 과목을 선택하시는 분들은 이미 기하를 잘 하시는 분들이 많기 때문에 이 칼럼이 얼마나 많은 분들께 도움이 될 지 잘은 모르겠습니다.
그러나, 혹여나 기하를 그저 "재능의 영역"으로 생각하고 막연히 기피하고 계시거나, 미적에 자신이 없어 선택과목을 변경하시고 싶으신 분들이 약간의 힌트를 얻어가실 수 있으리라고 생각하고, 오늘 칼럼은 그런 분들께 초점을 맞춰 진행해보도록 하겠습니다. 혹시나 나는 미적분 선택자지만, 과외에서 기하도 가르칠 필요가 있다라거나 가르치고 싶다(시급을 올려!) 하시는 분들도 읽어보시면 도움이 되실 것 같습니다. 그닥 딥한 내용은 나오지 않으니(학문 자체가 딥하지 못합니다) 편하게 읽어주시면 될 것 같습니다.
저희가 난이도가 높은 미적 문제를 풀 때는
1. 문제 발문을 몇 개의 친숙한 덩어리로 쪼갠 후
2. 각 덩어리에서 얻어내야 할 단서들을 얻어내서
3. 이를 조합해 나감으로써 해결합니다.
기하의 공간도형 문제들도 위와 비슷한 방식으로 해결해 나갈 수 있습니다.
다만, 문제의 발문을 "쪼개는" 대신, 주어진 입체를 다각도에서 관찰함으로써 저희에게 친숙한 상황들을 관찰하고 이로부터 필요한 정보들을 얻어냅니다. 이 내용을 조금 더 자세히 설명하기 위해 아래 문제를 분석해보도록 하겠습니다.

다음 문제는 기하를 공부해 보셨더라면 한번쯤은 들어보셨을 그 악명 높은 "베르테르 77제"의 19번입니다.
(시작부터 장난질이냐 라는 생각이 드실 수 있지만, 문제를 차근차근 여러 각도에서 바라보면 해당 문제가 그닥 빡빡한 문제는 아니라는 것에 동의하실 수 있으실 겁니다.)
위 문제를 끝까지 읽었을 때, 다른 조건은 그래도 머리에 좀 상황이 그려지는 방면, 정말로 물음표만 띄우는 발문이 하나 있을 것입니다. 바로 아래의 발문이죠.

해당 상황을 주어진 그림에 그대로 표시해보면 아래와 같습니다.

이걸 그리고 난 다음에 드는 생각은... "대체 어디가 A'T가 최대가 되는 지점일까" 라는 것입니다.
이 조건을 분석하기가 까다로운 이유는, 선분 A'B'과 점 T가 움직이는 원주가 한 평면 위에 올라가 있지 않기 때문입니다. 가령, 선분 A'B'과 점 T의 자취가 한 평면 위에 있었다면, A'T기 최대가 되는 점 T의 위치는 A', B', T가 한 직선 위에 있을 때가 될 것입니다.
그럼 이제 여기서 멘붕이 옵니다. 저 원주를 A'B'이라는 선을 포함하는 평면상에 정사영시켜서 타원을 만들고... 그게 일직선이 되는... 근데 높이는 또 고려해야 하는데... 머리가 아프죠.
근데 위 문제 상황을 아래와 같이 다른 각도에서 관찰하면 어떨까요?

위 상황을 평면 beta를 밑면으로 두고 관찰한 것입니다. 이 때, 점 A'을 평면 beta 위에 정사영시킨 점을 점 H라고 하면, 위 문제 상황을 아래와 같이 관찰할 수 있습니다.

이러면 H B' T가 한 직선 위에 있을 때 A'T의 길이가 최대가 됨을 직관적으로 쉽게 알 수 있게 됩니다.
그럼 아래와 같이 (나) 조건을 쉽게 분석할 수 있습니다. (밥아저씨가 된 기분이네요)

이제 구하라는 것을 구해서 답을 내보도록 합시다. 구하라는 것은 아래와 같습니다.

(어떠한 도형의 다른 평면으로의 정사영의 넓이를 구하는 방법도 크게 두 가지가 존재합니다. 이는 나중에 다른 칼럼에서 찾아뵙겠습니다.)
이 때, 주어진 문제 상황을 평면 alpha와 beta가 모두 일직선으로 보이게 되는 각도에서 관찰하면, 아래와 같은 모습이 보일 것입니다.

위 그림을 통해 AB와 PQ의 길이가 같고 평행하며, AB와 B'B가 수직함을 이용하여 원래 삼각형 ABB'의 넓이와, 삼각형 ABB'을 포함한 평면과 평면 alpha의 이면각을 알 수 있습니다.
따라서, 구하는 넓이 S는 아래와 같습니다.

풀이의 사고 과정을 차근차근 따라오셨다면, 이해가 가지 않는 부분이 딱히 있었을 것 같진 않습니다. 다만 물음표는 생길 수 있는데, 가령 아래와 같은 질문이 생길 수 있죠.
"야 너는 저걸 어떻게 평면 beta를 깔고 볼 생각을 했냐? 역시 기하는 재능이야."
위 생각을 하게 된 과정은 다음과 같습니다.
1. 저희는 원주 위를 도는 임의의 벡터를 다른 평면에 정사영시킨 벡터를 가지고 최대/최소를 논한 적이 단 한번도 없습니다. (못할걸요 애초에)
2. 그럼 A'B'을 원주가 있는 평면 위로 정사영 시켜봐야겠다는 생각이 자연스럽게 따라옵니다. 이 때 A' B'은 모두 고정점이기 때문에 정사영 시켰을 때 기존 문제 상황 대비 동점이 더 늘어나지도 않으며, 저희에게 "친숙한" 그 문제상황이 나타나기 때문에 옳은 방향을 잡았다는 것을 느낄 수 있습니다.
해당 문제의 풀이를 한 페이지에 정리하면 다음과 같습니다.

뭔가 상당히 복잡한 사고 과정을 거쳐간 것 같지만, 막상 저희가 한 일은 주어진 문제 상황을 다각도로 바라보는 것 그 이상 그 이하도 아니었습니다. 풀이 과정도 막상 계산하고 쓸 건 별 게 없죠. 이게 미적과 비교했을 때 기하의 엄청난 장점이라고 생각합니다.
다만, 주어진 상황을 3D 모델링 마냥 머리에서 빙글빙글 돌려가면서 관찰하는 것이 부담된다면, 권하기 힘든 과목인 것 같습니다. 장단이 명확하죠.
(위 풀이과정을 따라오시면서 요리보고 조리보고 알 수 없는 둘리 둘리 하셨다면 기하런은 지양하시는 게 좋습니다. 뭐 당연한 얘기를 이러고 길게 써 놨냐 하신다면 표점 vs 안정 1을 두고 잘 저울질하셔서 현명한 선택을 하시길 바랍니다.)
사실 이제까지 기하 문제의 해설은 그림 1개, 약간의 계산, 답으로 이루어진 것이 가장 아름다운 해설이라고 생각해 왔었습니다. 그러다 문득 그 아름다움에 남들이 공감할 수 없다면, 과연 그것이 진정으로 아름다운 것일까 라는 생각이 들었고, 논리 과정을 자세히 풀어서 써 본 칼럼을 작성하게 되었습니다.
기하를 사람들이 막연히 어려워하는 이유 중 하나가, 잘하는 사람들이 풀어둔 풀이에서 "도통 어떤 흐름으로 사고가 진행되었는지를 읽어낼 수 없다"인 것 같습니다. 그래서 앞으로도 종종 위와 같은 칼럼들로 찾아뵐 예정입니다.
"기스퍼거 저 놈의 머릿속은 도대체 어떻게 생겨먹었는가"에 대한 궁금증이 있으셨던 분들은 한 번씩 들러주시면 감사할 것 같습니다.
미적, 공통 관련 칼럼도 하고 싶은 이야깃거리가 생기면 잘 정리해서 들고 와보도록 하겠습니다.
긴 글 읽어주셔서 감사드립니다.
(좋아요와 팔로우는 사랑입니다. 이 사람이 더 많은 칼럼을 쓸 원동력이 됩니다!)
0 XDK (+1,000)
-
1,000
-
미미미누가 최신 영상에서 점공해달라고하고 댓글에서도 그러더만 오늘 여러명이 점수공개...
-
내가 다 부끄럽네 뭘 자꾸 사달래
-
투표부탁드려요 0 0
언매 미적 선택에 사탐 2개 모두 백분위 99일 때 국수영 성적 좋으면 고려대 의대...
-
새르비 의원 0 0
돌아오십시오
-
오늘 새르비 왜 이렇지 4 0
다 죽었나
-
지구과학, 사탐 찍특 팝니다 11 0
재수생의 노하우를 알려드립니다. 탐구 기준으로는 거의 맞아 떨어지는거 같습니다....
-
오늘은 새르비 사망했네 3 0
-
졸업식날 교복셔츠입고가야댐? 4 1
ㅅㅂ
-
수능특 쉬운거같은데 어려움 1 0
올1등급될거같은데 안됨
-
와 잠만 지금 조진거같음 2 1
아까부터 배는 아픈데 방구는 안나오길래 똥배인가? 생각하고 변기 착석함 15분 동안...
-
내일졸업이야 6 1
ㅠㅠㅠㅠㅠ
-
난 내가 스무살 되면 0 0
술집을 줄줄이 꿰고있을줄 알았다. 아니네 차라리 고딩때가 더 빠삭함 ㄲㅂ~
-
작년처럼 추합 안돌것같긴한데 까보기 전까진 모르니까 2칸지름 ㅋㅋ 그 이전년도...
-
진짜 영혼까지 털거같음
-
시답잖은 고민을 진지하게 들어드립니다 18 1
진지한 고민은 안 받습니다
-
내가 키운거 같은 인스타 인플??루언서인데 팔로우 40배 늘어남 실물로보고싶어
-
주우후테이 라덴 2 0
-
오르비 잘자 5 0
굿나잇
-
오늘밤을새서라도 2 0
밀린일을다처리하겟다. 진자더이상은못미룸..
-
남자 운전자랑 여자 운전자 0 0
-
인강강사들 어디당 지지할거같음 13 0
강민철 김승리 현우진 김기현 이미지 조정식 이명학 임정환 윤성훈 김종익 이지영 내가...
-
지금 연대 일반과들 정시 점공 몇 명이나 했나요 9 0
여기는 66명 중에 28명밖에 점공을 안 했는데 원래 진학사가 문자 돌리기 전까지는...
-
서울대에 가고싶다 0 1
6명중에 6등인데 점공 26/28임
-
점공봐줄 천사분 0 0
제발
-
복전 안한다는 가정하에 숭실행정vs국민 경영 ㅇㄷ감 6 1
ㅇㅇ
-
흑백요리사2 개빡친 백종원 2 0
https://youtube.com/shorts/yvBpVUq8hkI?si=kqwzi...
-
잇올에서 냄새난다고 햇다가 욕 먹으신분 오늘 이해가 갔음 오줌싸는거때메 공용공간...
-
연고대가 3%가산이던데 이정도면 사탐런하는게 낫나요 08현역입니다
-
낮2등급이하인 애들중에 4 0
n제니 실모니 하면서 사설컨 풀려고하는거 개인적으로 참 안타까움 기본중에 기본인...
-
그럼 난 나이 결정 안할래
-
일단 피램 이후는 언매 하는 게 맞겠다 6모 이후에 결정하는 걸로
-
이렇게 생긴 사람 있나요? 9 0
-
시대갤에서 가장 쳐맞는 대학은 8 1
연고대인것 같네 연고대 걸고 시대인재 들어가는 입장에서 아이러니하노
-
이준석같이 똑똑해지고싶음 6 0
사실 멍청해서 누가 똑똑한지 모르겠음 그냥 말잘하는사람이되고싶음 말하는것마다 근거가 있엇음돟겠음
-
확통런 커리 추천좀 3 0
정시파이터였어서 내신 버렸고 그래서 고1 확률 부분 경우의수도 공부 안 하고 확통...
-
고민 들어드립니다 29 0
시답잖은 건 얘기하지 말고
-
Oceans apart, day after day 0 0
And I slowly go insane
-
강대 들어가기 전 공부? 2 0
강대 위업 들어가려고 하는데요 개강이 2월 23일이라서 들어가기 전까지 마냥...
-
백두옹(수뱃) 그립다 5 1
이사람때메 옯에 재미붙였는데 조용히 탈릅함
-
그리고 점공한 놈들한테 5만원 페이백을 해주는걸로 제도를 개편해야함
-
사탐 과탐 8 0
사탐 만점이랑 과탐 1 1이랑 얼추 비슷한거같은데 뭐가 쉬울까요? 의치한 노려보려고...
-
고양이 기르고 싶다 5 1
난 샴이 좋아
-
잘자콘 주세요 7 0
잘자…
-
정병호샘 되게 좋아보이는데 8 0
개념 돌리고 병호샘 따라가볼까
-
오르비 잘 3 0
자던가
-
잔다 6 0
-
재밌는 일은 다 새벽에 일어나
-
오 6 2
르비
-
N수생 가산점 좀 줘라 0 1
재수실패하고 자살한 H모씨 다들 알잖아 왜그래
-
오늘 새르비 왜이럼 8 0
리젠 왜이러냐...

헉 ㄷㄷ 귀하신 분이 누추한 곳에... 감사합니다!
감사합니다 ㅎㅎ기하칼럼은 좋아요

감사합니다!!기하에 관심은 없지만 동정의 의미로 좋아요
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아... 슬프지만 감사합니다... :)

이륙ㄱㄱ
감사합니다!
기하 유입 많이 많이 해주세요!!최고로 멋있어지는 방법!!

기하가 진짜 매력 터지고 멋있는 과목이라고 생각합니다. ㅎㅎ
신그저 시호님의 발자취를 걷고 있을 뿐입니다...

이거보고 확통 하기로 했다ㅋㅋㅋㅋ 우리 기하 많이 사랑해 주세요... 감사합니다!
기하해야되나

저희 기하 착해요 안 물어요현역이라 수능 기하치면 공통미적확통기하를 다 해야돼요ㅠㅠ
그럼 이참에 논술로...!
현역 화이팅입니다 ㅠㅠ 할 게 넘 많죠
읽어주셔서 감사합니다!
정성이 들어간 글 잘 읽었습니다 :)
기하 1등급으로서 너무 강추합니다 아주 좋아요
ㅎㅎ 기하가 잘 맞으시는 분들은 정말 편하게 1등급 받아가실 수 있다고 생각합니다

일단 모를 땐 xyz 3방향으로 단면화하기..이것도 아주 큰 도움이 되죠 ㅎㅎ 다음에 관련 내용으로 칼럼을 작성해볼 예정입니다

좋네요좋아해주셔서 감사합니다 ㅎㅎ!
미적러지만 개추

ㅎㅎ 읽어주셔서 감사합니다!
고트잖아 ...그저 "범부"일뿐...
방금정독했는데벽느껴져요
어질어질합니다
ㅎㅎ 열심히 써 봤습니다 감사합니다