[칼럼] 돌림힘 평형에 대한 접근(1편)
게시글 주소: https://orbi.kr/00071622839
안녕하세요. 저는 25 수능 현역으로 물리학2를 응시했으며, 44점을 맞아 2등급..이지만 조금이나마 물리학2를 공부하시는 분들에게 도움이 되었으면 하는 마음으로 이 칼럼을 적게 되었습니다. 사소한 변명을 하자면 6평 때 48을 맞아 2등급을 맞은 적을 제외하곤 모두 1등급이었습니다만(이렇게 보니 평가원은 9평을 제외하곤 모두 2네요..), 제 스스로 자격이 부족하다고 생각이 들어서 쓸지 말지 고민을 많이 했지만 겸손하게 글을 적어보고자 합니다. 자기소개는 여기까지 하고 본격적으로 시작해보겠습니다.
목차
1. 기본 돌림힘 평형
2. 질량 중심과 그 응용
3. 대상을 계로 인식하기
------------------
4. 2차원 돌림힘의 2가지 접근법(2편)
1. 기본 돌림힘 평형
돌림힘 평형 문제에서 주어지는 근본적인 조건은 크게 2가지입니다. 첫 번째는 힘의 평형이고, 두 번째는 돌림힘 평형입니다. 이 조건을 활용하는 가장 기본적이며 중요한 생각은 해당 물체가 평형이라면 어느 곳으로 축을 잡아도 돌림힘 평형이 성립한다는 것입니다. 즉 계산을 최대한 간단히 할 수 있도록 축을 설정하는 편이 유리하겠죠? 또한 이 생각에서 자연스럽게 상황이 변화해도 그 변화한 상황과 이전의 상황에서 발생한 토크의 변화량끼리 같다는 식을 쓸 수 있습니다. 다음 문제에서 간단히 적용해봅시다.
어렵지 않은 문제라 잘 푸셨을 것 같습니다.
저는 위와 같이 풀어봤는데요. 아마 평형을 유지할 수 있는 x의 최소와 최대의 상황에 대한 이해는 당연히 될 거에요. 전체 무게가 P에서 Q로 변화하게 되는 상황인 것이죠. 즉, 전체가 d만큼 변화한 토크=A가 x2에서 x1으로 변화하며 생성한 토크로 식을 세울 수 있겠죠? 이렇게 식을 작성하면 경제적으로 문제를 풀 수 있습니다.
2. 질량 중심
질량 중심이라는 것은 물체 전체의 질량 중심점을 의미합니다. 이를 이용하면 전체의 무게가 어디에 있어야 하는 지를 생각하며 문제를 풀 수 있는데요. 모든 질량을 중심점에 모으게 되면 그 점을 중심으론 돌림힘이 발생하지 않는 점이라는 의미도 있습니다. 즉, 이를 이용한 풀이도 1번의 풀이와 근본적으로 다른 풀이는 아니라는 점. 이러한 관점을 이용하면 힘을 합치거나 분배할 수도 있습니다.
즉, 이렇게 정리해볼 수 있을 것 같습니다. 내분을 역으로 이용하면 분배할 수도 있겠죠? 이를 이용해 문제를 풀어봅시다.
풀어보셨나요?
이런 식으로 질량 중심을 활용할 수 있겠죠? 조금 더 활용해봅시다.
1번의 풀이와 결합하고, 힘을 분배하면 빠르니 조금 더 응용이 필요해 어려웠을 수 있습니다.
이처럼 질량 중심을 활용해 힘을 합치거나 분배하여 문제를 직관적으로 빠르게 풀어나갈 수 있습니다. 나아가 질량 중심이라는 개념을 활용하면 물체가 막대에서 움직일 때 질량 중심의 속도를 구할 수 있습니다.
만약 질량 중심의 위치 변화가 없다면 위치가 변하는 물체끼리 변화량의 합이 0이면 평형이 유지가 되겠죠? 실제로 질량 중심의 위치가 변화한다고 하여도 위 공식을 활용하면 조금 더 간단히 상황을 기술할 수 있을 것입니다. 다음 문제로 정리해봅시다.
처음 풀면 좀 당황스러울 수 있는 형태의 유형입니다.
ㄷ은 스스로 풀어보세요!
3. 계로 관찰하기
여러 층으로 구성된 막대를 보면 돌림힘 평형을 여러 번 써야 하는 번거로움을 느끼실 수 있습니다. 그 때 여러 층으로 구성된 막대를 전체적으로 한 번에 관찰해봅시다. 가장 위 막대에 모든 줄이 종속되어 있는 경우에 계로 관찰한다는 것의 의미는 다음과 같이 유도 및 해석할 수 있습니다.
만약 다른 막대에도 줄이 연결된 경우는 어떻게 해석될 수 있을까요?
이처럼 P와 Q를 합친 한 막대로 인식하고 a, b ,e가 연결된 계로 인식할 수 있습니다. 역학에서 계에서 내력이 0인 것을 인지하는 것과 유사하게 생각할 수 있을 것 같습니다.
이것을 이용해 문제를 한 번 풀어볼까요?
한 번 풀어보셨나요?
이렇게 계로 관찰할 수 있습니다. 사실 위에 질량 중심 속도 문제도 이와 같은 이유로 합칠 수 있었던 것이기도 합니다. 한 문제 더 봐보죠.
질량 중심을 잘 이용해야겠죠?
간단히 풀리는 문제죠? 이제 줄 3개가 연결된 상태의 문제를 풀어봅시다!
풀어보셨나요?
계로 인식하면 최대, 최소가 되는 상황을 빠르게 인식할 수 있다는 장점이 있긴 했지만 계산할 때는 크게 유리한 지점은 없었네요. 이처럼 줄이 3개 이상 연결되는 경우엔 계로 상황을 인식하는 것이 상황 판단에는 유리할 수 있지만 계산할 때는 꽤 복잡해진다는 단점이 있습니다.
이상으로 1편을 마치고자 하는데 도움이 되셨을지 잘 모르겠습니다. 최대한 열심히, 오류 없이 전달하고자 했는데 오류가 있다면 지적 달게 받겠습니다! 2편을 적을 수 있는 상황이 된다면 2편으로 돌아오겠습니다. 긴 글 읽어주신 것에 감사드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좀 불신하는 편인데. 그 말을 기억했다가 강사가 말해주면 회독효과로 급신뢰상승하는 편이에요.
-
국어 풀다가 갑자기 생각든건데 죄수의 딜레마에서 나는 무조건 그냥 자수하는게...
-
있는데... 이 경우 몬스터가 나아요?
-
세포 하나의 질량이 2라고 하면 이게 두개로 분열하면 세포 하나가 질량이 1이...
-
취권써도 2
아무도 모르네ㅋㅋㅋㅋ평소에도 일을 취한듯이핸나
-
2025학년도 부산대 논술, 면접 기출(선행학습평가_의약학계열 포함) 0
2025학년도 부산대 논술, 면접 기출(선행학.. : 네이버블로그
-
A: 효과가 빠르다 몬스터다먹어서커피마시는중
-
잇올 사탐 2개 과탐 2개 신청은 현장 접수때 수정 가능하게 할거라 함 ㅇㅇ
-
아니면 yapping 존나 하고 결과 나중에 얘기함?
-
일단 넣은 내가 승자ㅅㅅ
-
지금부터일까요……?
-
도널드 트럼프 미국 대통령이 3일(현지시간) 반도체 분야 관세 도입에 대해 "아주...
-
의외로 몰랐던 사실 11
오늘 불금임
-
검색해도 잘안나와서
-
잇올 산본센터 0
내가 간다 왕복 두시간 ㅅㅂ
-
잇올 한달에 얼마임뇨? 13
국어 바로 옆이라 다닐지 고민하는 중
-
어떻게 세우시나요.. . 스트레스받아서 P답게 살고 싶은데 큰범주로 묶어서 짜시나요....
-
버스타면 45분 걸리는데다가 그날이 수업 가장 많은 날이네 하아,,
-
잇올 1
여러 지점에 신청해서 하나 골라가도 되나요..?ㅌㅋㅋ
-
50분 남았네 1
도키도키
-
모교 가야되나 개먼데
-
구매하기 전에 물어보면 안 되나
-
뭐가 될까
-
얼타서 엄청 늦었네..
-
내 친구 옆에서 사탐 두 개는 신청 버튼이 안되던디여
-
바뀌면 중섭이냐 일섭이냐
-
방송사 실시간 장전.
-
이니 탐구 2 누르면 신청버튼 활성화되는걱도 스크롤안내랴봐서 몰랐음 아니 이게뭐임 ㅁㅊ
-
그렇습니다
-
탐구1: 사탐 탐구2: 과탐 고정해놓고 탐구1+탐구2 조합 아니면 접수 신청 안...
-
다 입력했는데 버튼이 안눌려요
-
접수신청까지 눌렀는디 뭐가 암것도 안뜨네
-
시멘트 뜯어내고 이래서 치우는데만 꼬박 이틀 걸렸는데 일어나니까 집에 물이 안나오네..
-
금공강X 3
금풀강O
-
논술 가이드북 업로드 됨술 가이드북 업로드...
-
잇올 홈피 신청 0
폰으로도 가눙함??컴터 타자보더 폰타자가 더빠른데…
-
고향친구들이 저랑 같이 보려고 표 끊어서 온대요 그전까지 빠짝해야지
-
Ebs는 되던데
-
관심못받으면 삭제하고 메인가면 삭제하고 이새끼들은 좋아요 한 7개쯤 받으면서?...
-
허접 늦기잇♡
-
텍스트 깨진 것 같긴 한데 뭔가 무섭네요...
-
심심해 2
버둥버둥
-
퇴근완료 5
오늘은 무서우니 집콕
-
ㅇ
-
근데 막상 부대로 복귀하면 이 ㅈ같은 감정이 없어짐 ㅋㅋ ㅆㅂ
-
사문 윤성훈 4
물리에서 사문으로 바꿨는데 30강 짜리 강의 매일 1개씩 듣기 vs 30강짜리...
-
국어 고정1인데 9
이럼 사문생윤 할때 좀 유리한가료? 사문은 수학적 사고력도 좀 요구한다고 하던데...
-
재수생이라 현역때 기출 3번 정도 봤었음 지금 너기출로 이미 1회독 한 상태임...
물2 재밌겠다
현장에서 풀맞한 문제들이...