[칼럼] 돌림힘 평형에 대한 접근(1편)
게시글 주소: https://orbi.kr/00071622839
안녕하세요. 저는 25 수능 현역으로 물리학2를 응시했으며, 44점을 맞아 2등급..이지만 조금이나마 물리학2를 공부하시는 분들에게 도움이 되었으면 하는 마음으로 이 칼럼을 적게 되었습니다. 사소한 변명을 하자면 6평 때 48을 맞아 2등급을 맞은 적을 제외하곤 모두 1등급이었습니다만(이렇게 보니 평가원은 9평을 제외하곤 모두 2네요..), 제 스스로 자격이 부족하다고 생각이 들어서 쓸지 말지 고민을 많이 했지만 겸손하게 글을 적어보고자 합니다. 자기소개는 여기까지 하고 본격적으로 시작해보겠습니다.
목차
1. 기본 돌림힘 평형
2. 질량 중심과 그 응용
3. 대상을 계로 인식하기
------------------
4. 2차원 돌림힘의 2가지 접근법(2편)
1. 기본 돌림힘 평형
돌림힘 평형 문제에서 주어지는 근본적인 조건은 크게 2가지입니다. 첫 번째는 힘의 평형이고, 두 번째는 돌림힘 평형입니다. 이 조건을 활용하는 가장 기본적이며 중요한 생각은 해당 물체가 평형이라면 어느 곳으로 축을 잡아도 돌림힘 평형이 성립한다는 것입니다. 즉 계산을 최대한 간단히 할 수 있도록 축을 설정하는 편이 유리하겠죠? 또한 이 생각에서 자연스럽게 상황이 변화해도 그 변화한 상황과 이전의 상황에서 발생한 토크의 변화량끼리 같다는 식을 쓸 수 있습니다. 다음 문제에서 간단히 적용해봅시다.
어렵지 않은 문제라 잘 푸셨을 것 같습니다.
저는 위와 같이 풀어봤는데요. 아마 평형을 유지할 수 있는 x의 최소와 최대의 상황에 대한 이해는 당연히 될 거에요. 전체 무게가 P에서 Q로 변화하게 되는 상황인 것이죠. 즉, 전체가 d만큼 변화한 토크=A가 x2에서 x1으로 변화하며 생성한 토크로 식을 세울 수 있겠죠? 이렇게 식을 작성하면 경제적으로 문제를 풀 수 있습니다.
2. 질량 중심
질량 중심이라는 것은 물체 전체의 질량 중심점을 의미합니다. 이를 이용하면 전체의 무게가 어디에 있어야 하는 지를 생각하며 문제를 풀 수 있는데요. 모든 질량을 중심점에 모으게 되면 그 점을 중심으론 돌림힘이 발생하지 않는 점이라는 의미도 있습니다. 즉, 이를 이용한 풀이도 1번의 풀이와 근본적으로 다른 풀이는 아니라는 점. 이러한 관점을 이용하면 힘을 합치거나 분배할 수도 있습니다.
즉, 이렇게 정리해볼 수 있을 것 같습니다. 내분을 역으로 이용하면 분배할 수도 있겠죠? 이를 이용해 문제를 풀어봅시다.
풀어보셨나요?
이런 식으로 질량 중심을 활용할 수 있겠죠? 조금 더 활용해봅시다.
1번의 풀이와 결합하고, 힘을 분배하면 빠르니 조금 더 응용이 필요해 어려웠을 수 있습니다.
이처럼 질량 중심을 활용해 힘을 합치거나 분배하여 문제를 직관적으로 빠르게 풀어나갈 수 있습니다. 나아가 질량 중심이라는 개념을 활용하면 물체가 막대에서 움직일 때 질량 중심의 속도를 구할 수 있습니다.
만약 질량 중심의 위치 변화가 없다면 위치가 변하는 물체끼리 변화량의 합이 0이면 평형이 유지가 되겠죠? 실제로 질량 중심의 위치가 변화한다고 하여도 위 공식을 활용하면 조금 더 간단히 상황을 기술할 수 있을 것입니다. 다음 문제로 정리해봅시다.
처음 풀면 좀 당황스러울 수 있는 형태의 유형입니다.
ㄷ은 스스로 풀어보세요!
3. 계로 관찰하기
여러 층으로 구성된 막대를 보면 돌림힘 평형을 여러 번 써야 하는 번거로움을 느끼실 수 있습니다. 그 때 여러 층으로 구성된 막대를 전체적으로 한 번에 관찰해봅시다. 가장 위 막대에 모든 줄이 종속되어 있는 경우에 계로 관찰한다는 것의 의미는 다음과 같이 유도 및 해석할 수 있습니다.
만약 다른 막대에도 줄이 연결된 경우는 어떻게 해석될 수 있을까요?
이처럼 P와 Q를 합친 한 막대로 인식하고 a, b ,e가 연결된 계로 인식할 수 있습니다. 역학에서 계에서 내력이 0인 것을 인지하는 것과 유사하게 생각할 수 있을 것 같습니다.
이것을 이용해 문제를 한 번 풀어볼까요?
한 번 풀어보셨나요?
이렇게 계로 관찰할 수 있습니다. 사실 위에 질량 중심 속도 문제도 이와 같은 이유로 합칠 수 있었던 것이기도 합니다. 한 문제 더 봐보죠.
질량 중심을 잘 이용해야겠죠?
간단히 풀리는 문제죠? 이제 줄 3개가 연결된 상태의 문제를 풀어봅시다!
풀어보셨나요?
계로 인식하면 최대, 최소가 되는 상황을 빠르게 인식할 수 있다는 장점이 있긴 했지만 계산할 때는 크게 유리한 지점은 없었네요. 이처럼 줄이 3개 이상 연결되는 경우엔 계로 상황을 인식하는 것이 상황 판단에는 유리할 수 있지만 계산할 때는 꽤 복잡해진다는 단점이 있습니다.
이상으로 1편을 마치고자 하는데 도움이 되셨을지 잘 모르겠습니다. 최대한 열심히, 오류 없이 전달하고자 했는데 오류가 있다면 지적 달게 받겠습니다! 2편을 적을 수 있는 상황이 된다면 2편으로 돌아오겠습니다. 긴 글 읽어주신 것에 감사드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적 과탐 실수밖에 없어서 반응이 시원찮음 생윤러들아 같이 울어줘
-
"가능할까요?" 시즌4 14
?
-
국어 일타강사분 현강을 듣는데(강민철 아님) 잡담이 너무 많아요. 체감시간으론...
-
오늘 30분정도 상담했는데 쓸데없는 비유만 20분을 하고 뭐 물어봐도 비유적으로...
-
미친 개똥줄 한번 타보면 탐구 공부할때 눈빛부터 달라짐 ㅋㅋ
-
의대갈거 아니면 3
의대갈거 아니면 확통사탐화작이 맞나요? 고대목표 문과가도됨 지금 시발점 미적상 밖에...
-
아니 좀 그럴 수 있는거 아님?
-
계속 냄새 솔솔 올라와서 좆같음
-
민주국가의 국민 각자는 서로를 공동체의 대등한 동료로 존중하고 자신의 의견이 옳다고...
-
작가가 되고싶다 10
하지만 의대는 꼭 가야겠더라 오랜 생강이다...
-
문과 확통하는데 나머지 다 2 이상 띄운다는 가정하에 수학을 몇등급 띄워야 인서울 가능할까요?
-
실은 내가 근 11~12년 전에 대강 예상은 하고 잇엇음. 그 때도 취업 ㅈㄴ 안...
-
치킨피자파티 2
1/100
-
훈훈하다는애들보면 얼굴개나주고 그냥 머리 펌하고 스타일만갖추면 훈훈하다하네
-
야이 기요미야 3
너말이야 너~~
-
잠들었어 0
너무 속상하다 . . 매일매일이 왜케 맘에 안 드는지..
-
예상댓글 : 글씨 꼬라지 ㅋㅋㅋㅋㅋㅋ
-
투데이: 8
아니 제 프사 그만 좀
-
메인 제조기 0
나야나 흐흐ㅡ
-
오류라고 하기엔 좀 그렇고 그냥 질문인데 2번 보기에 단모음 ‘ㅣ’가 반모음...
-
난 진짜 병신이네 12
-
맞팔구 2
ㄱ
-
대학생들 와봐요 4
친구들 스토리 보니까 무슨 이름적혀져있고 목에 하나씩 걸고 활동하던데 뭐하는건가요
-
생윤동사꾼은 중간 고사 기간에 지속적인 오르비 활동을 하며 부모님의 기대를 갉아먹고...
-
시간 삭제되네 ㄹㅇ
-
어디가서 사야돼요??
-
두 가지 것이 나의 마음을 늘 새롭고 강하게 감동시킨다. 그것은 내 위에 있는 별이...
-
씨발 망했다 2
탄핵 보다가 시간 너무 써버렸다 하
-
기분 좋아서 하루종일 공부가 잘됨
-
있?
-
피자나라치킨공주 3
예전에 유튜버 뒷광고인가 뭐 논란있지 않았나요 왜이렇게 익숙하지
-
고전시가 공부하는데 잔나비라는 단어가 많이 나오길래 함 찾아보니까 원숭이라던데 그때...
-
오늘은 불금인데 6
다들 뭐하심?
-
美대사관 “헌재 결정 존중…한미동맹 지속적 힘 재확인” 1
주한 미국 대사관은 4일 윤석열 전 대통령의 탄핵 인용과 관련해 “미국은 한국의...
-
재매이햄 비호 여론이 장난이 이니던데
-
수능수학 목표 변경 28
중간 2에서 낮은 3으로...
-
총선 졌으면 얌전히 있을것이지 ㅉㅉ
-
칸트는 자기 자신을 속이지 말 것 이란 정언명령에 어긋난다고 보겠군..
-
이것만은 안된다
-
혼술하기 좋은곳 추천좀 12
ㅈㄱㄴ
-
이거 진짜 3점급임? 14
아니라고 해줘
-
안가 배째 어쩔건데 돈안벌어
-
수능을 보신 분들이라면 수능장의 분위기에 대해서 잘 알고 계시겠죠. 하지만...
-
이제 안함 오늘은 못해
-
개념서에서 이 공식이 왜 나온거지 원리를 알아야된다고들 하시던데 지수법칙이나 각변환...
-
생각하면 개추
-
[계속되는 뻘글] 오르비의 리젠량을 그래프로 나타내어 보자. 5
1. 연간 a1 a2.....<--그래프의 뾰족점들 매년 다이나믹하긴 하다 2. 일간
물2 재밌겠다
현장에서 풀맞한 문제들이...