Orbi지형T_[점수를높이는5M.Column] Ch3.수학적귀납법'지형도를그리다'
게시글 주소: https://orbi.kr/00071579628
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH4 Mathematical Induction
안녕하세요! Orbi Online Class 김지형 강사입니다.
오늘은 수학의 중요한 개념 중 하나인 귀납법에 대해 이야기해 보려 합니다. 이 주제는 여러분의 등급을 결정짓는 핵심 요소로, 특히 2~3등급 학생들이 반드시 잡아야 하는 부분입니다.
최근 귀납법과 관련된 문제들을 살펴보면, 해마다 뚜렷한 트렌드가 느껴집니다. 물론 독립적으로 접근할 수도 있지만, 과거 가형의 고난도 문제보다 최근 출제된 귀납법 문항을 철저히 분석하고 마스터하는 것이 훨씬 효율적입니다.
그래서 오늘은 다음 두 가지 주제를 중심으로 글을 이어가 보려 합니다.
1️⃣ 최근 출제된 귀납법 문항
(2025학년도 6월, 9월, 수능 및 2024학년도 수능 문제)
이 문항들을 하나하나 살펴보며, 어떤 방식으로 접근하고 풀어나가야 할지 상세히 다뤄 보겠습니다.
2️⃣ 기하적으로 해석할 수 있는 귀납법 문항
귀납법 문제를 기하적인 시각으로 풀어내는 방법은 매우 중요한 스킬입니다. 이 부분을 함께 연습하면 여러분의 사고력이 한층 더 확장될 것입니다.
오늘은 이 두 가지를 중심으로 여러분이 귀납법을 완벽히 마스터할 수 있도록 도와드리겠습니다. 함께 천천히, 그리고 꼼꼼히 살펴보아요!
Chapter 4: 수1 수학적 귀납법
(Mathematical Induction)
1️⃣ 최근 출제된 귀납법 문항
[2025학년도 수능 22번]
SOLUTION 1
2025학년도 수능 22번 문항은 정수인 첫째 항을 추론하는 유형으로 출제되었습니다. 기출문제를 열심히 공부한 학생이라면, 이 문항에 대해 직관적으로 접근할 수 있었을 것이라 생각합니다.
저는 매일 수학을 연구하며 학생 여러분과 함께 고민하는 사람입니다. 그래서 오늘은 이 귀납법 문항을 조금 더 명확하고 직관적으로 풀이하는 과정을 보여드리겠습니다. 귀납법을 통해 문제를 해결하는 방법이 여러분께 큰 도움이 되길 바랍니다!
SOLUTION 2
위 풀이에서 보여드린 것처럼, 직관적인 접근도 중요하지만, 논리적으로 문제를 해결하는 능력을 키우는 것이 더욱 중요합니다. 이러한 접근 방식을 익히면, 이 문항뿐만 아니라 다른 문제들까지도 자신감 있게 해결할 수 있는 실력을 충분히 쌓을 수 있을 거라 믿습니다.
[2025학년도 6월 평가원 22번]
2025학년도 6월 평가원 문항은 처음과 끝을 중간으로 연결하는 방식으로 깔끔하게 해결할 수 있었습니다. 이와 비슷한 유형의 문항이 2025학년도 9월 평가원에서도 출제되었는데요, 이를 통해 이 유형이 앞으로도 출제될 가능성이 높다고 생각합니다.
학생 여러분께서는 이러한 유형의 풀이 방법을 익혀 두신다면, 앞으로도 유사한 문제를 자신 있게 해결하실 수 있을 거예요!
[2025학년도 9월 평가원 22번]
2025학년도 9월 평가원 문항은 6월 평가원 문항과 비슷한 유형으로 출제되었습니다. 그래서 처음과 끝을 연결하는 풀이 방법을 활용해 효율적으로 해결해 보았는데요, 이 방법은 경우의 수를 최소화하여 문제를 훨씬 더 쉽게 풀 수 있다는 장점이 있습니다.
[2024학년도 수능 15번]
2년 전 수능 15번 문항에서는 귀납법을 활용하여 제시된 항을 다음 항으로 연결하고, 이를 바탕으로 정보를 파악한 뒤 역으로 추론하는 형태로 출제되었습니다. 이 유형의 문제는 2년 전과 1년 전 교육청 모의고사에 여러 차례 출제되었기 때문에, 충분히 대비할 수 있는 문항이었습니다.
여기서 가장 중요한 포인트는 '구조의 반복'을 파악하는 것입니다. 제가 제시한 풀이법에서도 이 점을 강조했는데요, 구조의 반복이 발생하는 순간을 발견하면, 복잡해 보이는 문제도 한결 단순하게 해결할 수 있습니다.
특히, 구조의 반복을 확인하지 않고 노가다식으로 풀다 보면, 시간 소모가 커지고 효율도 떨어질 수 있습니다. 반복 구조를 정확히 파악해 두시면, 생각에 지나치게 얽매이지 않고 문제를 쭉쭉 아래로 전개할 수 있습니다.
여러분도 문제를 풀 때 '구조의 반복'이라는 힌트를 꼭 기억해 두세요. 이것이야말로 풀이 시간을 줄이고 효율적으로 문제를 해결하는 열쇠가 될 것입니다!
2️⃣ 기하적으로 해석할 수 있는 귀납법 문항
다음처럼 등차수열로 생각한 뒤, 이를 그래프로 매핑(mapping) 하면 훨씬 쉽게 문제에 접근할 수 있습니다.
그래프를 활용하면 문제의 구조와 규칙이 더 명확히 드러나기 때문에, 복잡해 보이는 문제도 단순하고 직관적으로 해결할 수 있습니다. 이 방식은 특히 시각적 이해를 돕고 규칙성을 파악하는 데 큰 도움이 되니, 꼭 활용해 보시길 권장합니다!
다음처럼 n번째 항을 x로, n+1번째 항을 y로 생각하고, 이를 일차 함수로 유도하여 풀이를 진행할 수 있습니다. 이렇게 풀 수 있는 이유는 x의 범위가 정확하게 매겨져 있기 때문에 가능한 풀이 방법이에요.
하지만, 다른 문항들에서는 조건들이 정의역처럼 명확하게 주어지지 않는 경우가 많기 때문에, 이런 방식으로 접근하는 것은 어려울 수 있습니다. 그러므로 이 풀이 방법은 구조가 명확히 잡히는 문항에 적용할 수 있을 때, 더욱 효율적으로 풀이할 수 있습니다.
이러한 접근법을 적절한 문항에 활용하신다면, 문제를 훨씬 더 빠르고 쉽게 해결하실 수 있을 거예요! 여러분의 문제 해결 능력을 믿고 응원합니다!
자, 오늘은 우리가 꼭 공부해야 할 수학적 귀납법 문항들에 대해 Column을 써보았습니다. 제가 대치동 현장에서 수학적 귀납법을 잘 가르치는 강사로서, 실제 강의에서 사용했던 풀이 방식을 오르비 인강에 그대로 담아 촬영해 놓았습니다. 이렇게 직접 현장에서 가르치는 방법을 인강에 그대로 담았기 때문에, 여러분이 한 번만 들어보셔도 귀납법을 쉽고 완벽하게 마스터하실 수 있을 거예요!
또한, 최근 트렌드에 맞춰서 꼼꼼하게 설명을 해놓았으니, 많은 관심 부탁드립니다. 다음 Column에서는 수2 함수의 극한과 연속에 대해 다뤄볼 예정이에요. 절댓값 함수의 극한과 같은 조금 난이도 있는 개념들을 쉽게 풀 수 있는 다양한 팁들도 소개할 예정이니 기대해 주세요!
궁금한 점이 있으면 언제든지 댓글이나 쪽지로 물어보세요.
친절하게 답변 드리겠습니다! 여러분의 학습을 항상 응원합니다!
도움이 되셨다면 좋아요! 팔로우! 부탁드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
벌써 10년이구나야.... 근데 pvp랑 파쿠르는 아직도 폐급임
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
ㄹㅇ 멘탈 주체가 안됨 24년때 9모 수학이 워낙 쉬웠어서, 수능 ㅈㄴ 어려울꺼라고...
-
옯마크 렐름 홍보 31
https://discord.gg/dTrF8wKC 현재 서버에 9명 이상 초대돼있음
-
95분/92점 12번 22번 틀 12번 범위 엄밀히 나눅ㅣ+ 케이스 분류 기준에...
-
국어 기출 다 끝내고 Ebs랑 리트 할려하고 수학은 드릴이랑 어싸 영어는 괜찮아...
-
여긴 누구......나는 어디......
-
평가원 #~#
-
어려운 사설 풀때보다 더 멈칫거리네 확실히 내신 수학이랑 수능 수학은 스타일이 확실히 다른듯
-
작년부터 졸리면 무조건 엎드려서 잤었는데 요즘은 오히려 멍해지고 더 자고 싶어짐...
-
드릴 워크북 1
푸세요?
-
메가 패스 쓰고있어요
-
이따 가려고 했는데 비올수도 있어서 걍 지금 산책 갔다 와서 공부해야지
-
대표적으로 여성인권이 파국으로 치닫음
-
드릴순서 2
드릴뭐부터해야됨? 3모는 1임 드릴드는 뭐고
-
주된 바≠주재 0
하늘이 부여≠하늘의 이치
-
서양철학은 그래도 ‘증명’이라는 시도를 해서 읽다보면 아 그렇구나 이런게 있는데...
-
게이 될 거 같네 ㄹㅇ..
-
글을 읽어도 머리에 안들어오고 문제도 계속틀리는데 이거 저능아라서 그러는거임? 머리가 그냥 멍함
-
시험 전날에 휴일이고 시험날 수업 2개밖에 없다고? 0
이거 시험 보라고 하늘이 판 깔아 주는 거 아님? 아 딱대 ㅋㅋㅋ
-
둘 중 어디감?
-
출근하기존나싫다 수험생들열시미공부하시소
-
10만원 벌었다 1
엔화 오르고 환율 나락가서 가만히 들고만 있어도 돈 들어오네
-
전자제품 관심이 없음 그냥 편하게 쓸 수 있으면 그만
-
한국에서 제일 많이 받는곳은 평균연봉 2억이구나
-
스벅 메뉴 or 본인 최애 커피 추천좀 오늘은 딱히 땡기는게 없네 뭔가 마시고는...
-
캬 5
24 8투스 수학 100
-
안녕하세요 단순한 문제는 쉽게 푸는데 조금 응용하면 못 푸는 경우도 있죠 그게...
-
고2 13346에서 고3 12111 만들어버림 캬
-
세계지도 좀 자세히 보고싶은데 아무대나가서 스샷해서 줌당기면 다 화질 흐려지고...
-
노베에서 쎈발점 끝내고 오늘부터 프메랑 기출 병행할 생각이어서 프메 강의 듣고 문제...
-
난 가격보고 장지갑 바로 질렀음 남자는 장지갑이지 ㅇㅇ
-
쿠바나샷 3
랜만오
-
Rpm 다음으로 풀 문제집 고민입니다 쎈b 일품 일등급만들기 뭐가 나을까요??...
-
진짜 말 그대로..ㅜㅜ 계속 하다보면 갑자기 팍 오르나요 그냥 계속 밑 빠진 독에...
-
그 애완견들이 강사가 하는 말을 십분 이해했을지도 의문이고 고금으로 증명된...
-
가슴이 웅장해진다평가원 기출만 고집하던 나는 바보였구나.......21년~25년꺼...
-
251130 1
현장에서 해석도 제대로 못하고 포기했다가 얼마전에는 온갖노력을해서 낑낑풀었는데 이제...
-
반수 공부 2
시작하기 너무 싫다
-
김상훈 선생님 0
고전시가 tmi, 문학개념매뉴얼 중 뭘 먼저 들어야 하나요??
-
더 어려운걸 들고와라
-
내주변엔 현역~재수 중 시절 나를 포함해서 반비례하는 케이스가 너무 많음 바뀐 연대...
-
환율 뭐야 3
원달러 1480원 대라니...
-
성별은 남자기준이구요 개원한의사 정도면 전국 계층 상위 몇퍼 안에 드나요 ?
-
학교 vs 학과 0
둘 다 붙어면 어디가나요? 충북대 윤리교육과 가면 임용고시 볼 생각이고 경북대...
-
매일 +1점,국어 1등급을 만드는 완벽한 루틴 2026학년도 수능 국어 영역 대비...
-
스포츠판은 워낙 유명하고 롤판은 이제 슬 아이돌화가 돼서 더이상 이스포츠...
그냥 믿고 맡기는 지형쌤...
감사합니다ㅎㅎ작년에 배웠던 내용이죠??

ㅋㅅㅋ정독했습니다 좋은내용이 많네요이 글이 진짜 유익한데