Orbi지형T_[점수를높이는5M.Column] Ch3.수학적귀납법'지형도를그리다'
게시글 주소: https://orbi.kr/00071579628
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH4 Mathematical Induction
안녕하세요! Orbi Online Class 김지형 강사입니다.
오늘은 수학의 중요한 개념 중 하나인 귀납법에 대해 이야기해 보려 합니다. 이 주제는 여러분의 등급을 결정짓는 핵심 요소로, 특히 2~3등급 학생들이 반드시 잡아야 하는 부분입니다.
최근 귀납법과 관련된 문제들을 살펴보면, 해마다 뚜렷한 트렌드가 느껴집니다. 물론 독립적으로 접근할 수도 있지만, 과거 가형의 고난도 문제보다 최근 출제된 귀납법 문항을 철저히 분석하고 마스터하는 것이 훨씬 효율적입니다.
그래서 오늘은 다음 두 가지 주제를 중심으로 글을 이어가 보려 합니다.
1️⃣ 최근 출제된 귀납법 문항
(2025학년도 6월, 9월, 수능 및 2024학년도 수능 문제)
이 문항들을 하나하나 살펴보며, 어떤 방식으로 접근하고 풀어나가야 할지 상세히 다뤄 보겠습니다.
2️⃣ 기하적으로 해석할 수 있는 귀납법 문항
귀납법 문제를 기하적인 시각으로 풀어내는 방법은 매우 중요한 스킬입니다. 이 부분을 함께 연습하면 여러분의 사고력이 한층 더 확장될 것입니다.
오늘은 이 두 가지를 중심으로 여러분이 귀납법을 완벽히 마스터할 수 있도록 도와드리겠습니다. 함께 천천히, 그리고 꼼꼼히 살펴보아요!
Chapter 4: 수1 수학적 귀납법
(Mathematical Induction)
1️⃣ 최근 출제된 귀납법 문항
[2025학년도 수능 22번]
SOLUTION 1
2025학년도 수능 22번 문항은 정수인 첫째 항을 추론하는 유형으로 출제되었습니다. 기출문제를 열심히 공부한 학생이라면, 이 문항에 대해 직관적으로 접근할 수 있었을 것이라 생각합니다.
저는 매일 수학을 연구하며 학생 여러분과 함께 고민하는 사람입니다. 그래서 오늘은 이 귀납법 문항을 조금 더 명확하고 직관적으로 풀이하는 과정을 보여드리겠습니다. 귀납법을 통해 문제를 해결하는 방법이 여러분께 큰 도움이 되길 바랍니다!
SOLUTION 2
위 풀이에서 보여드린 것처럼, 직관적인 접근도 중요하지만, 논리적으로 문제를 해결하는 능력을 키우는 것이 더욱 중요합니다. 이러한 접근 방식을 익히면, 이 문항뿐만 아니라 다른 문제들까지도 자신감 있게 해결할 수 있는 실력을 충분히 쌓을 수 있을 거라 믿습니다.
[2025학년도 6월 평가원 22번]
2025학년도 6월 평가원 문항은 처음과 끝을 중간으로 연결하는 방식으로 깔끔하게 해결할 수 있었습니다. 이와 비슷한 유형의 문항이 2025학년도 9월 평가원에서도 출제되었는데요, 이를 통해 이 유형이 앞으로도 출제될 가능성이 높다고 생각합니다.
학생 여러분께서는 이러한 유형의 풀이 방법을 익혀 두신다면, 앞으로도 유사한 문제를 자신 있게 해결하실 수 있을 거예요!
[2025학년도 9월 평가원 22번]
2025학년도 9월 평가원 문항은 6월 평가원 문항과 비슷한 유형으로 출제되었습니다. 그래서 처음과 끝을 연결하는 풀이 방법을 활용해 효율적으로 해결해 보았는데요, 이 방법은 경우의 수를 최소화하여 문제를 훨씬 더 쉽게 풀 수 있다는 장점이 있습니다.
[2024학년도 수능 15번]
2년 전 수능 15번 문항에서는 귀납법을 활용하여 제시된 항을 다음 항으로 연결하고, 이를 바탕으로 정보를 파악한 뒤 역으로 추론하는 형태로 출제되었습니다. 이 유형의 문제는 2년 전과 1년 전 교육청 모의고사에 여러 차례 출제되었기 때문에, 충분히 대비할 수 있는 문항이었습니다.
여기서 가장 중요한 포인트는 '구조의 반복'을 파악하는 것입니다. 제가 제시한 풀이법에서도 이 점을 강조했는데요, 구조의 반복이 발생하는 순간을 발견하면, 복잡해 보이는 문제도 한결 단순하게 해결할 수 있습니다.
특히, 구조의 반복을 확인하지 않고 노가다식으로 풀다 보면, 시간 소모가 커지고 효율도 떨어질 수 있습니다. 반복 구조를 정확히 파악해 두시면, 생각에 지나치게 얽매이지 않고 문제를 쭉쭉 아래로 전개할 수 있습니다.
여러분도 문제를 풀 때 '구조의 반복'이라는 힌트를 꼭 기억해 두세요. 이것이야말로 풀이 시간을 줄이고 효율적으로 문제를 해결하는 열쇠가 될 것입니다!
2️⃣ 기하적으로 해석할 수 있는 귀납법 문항
다음처럼 등차수열로 생각한 뒤, 이를 그래프로 매핑(mapping) 하면 훨씬 쉽게 문제에 접근할 수 있습니다.
그래프를 활용하면 문제의 구조와 규칙이 더 명확히 드러나기 때문에, 복잡해 보이는 문제도 단순하고 직관적으로 해결할 수 있습니다. 이 방식은 특히 시각적 이해를 돕고 규칙성을 파악하는 데 큰 도움이 되니, 꼭 활용해 보시길 권장합니다!
다음처럼 n번째 항을 x로, n+1번째 항을 y로 생각하고, 이를 일차 함수로 유도하여 풀이를 진행할 수 있습니다. 이렇게 풀 수 있는 이유는 x의 범위가 정확하게 매겨져 있기 때문에 가능한 풀이 방법이에요.
하지만, 다른 문항들에서는 조건들이 정의역처럼 명확하게 주어지지 않는 경우가 많기 때문에, 이런 방식으로 접근하는 것은 어려울 수 있습니다. 그러므로 이 풀이 방법은 구조가 명확히 잡히는 문항에 적용할 수 있을 때, 더욱 효율적으로 풀이할 수 있습니다.
이러한 접근법을 적절한 문항에 활용하신다면, 문제를 훨씬 더 빠르고 쉽게 해결하실 수 있을 거예요! 여러분의 문제 해결 능력을 믿고 응원합니다!
자, 오늘은 우리가 꼭 공부해야 할 수학적 귀납법 문항들에 대해 Column을 써보았습니다. 제가 대치동 현장에서 수학적 귀납법을 잘 가르치는 강사로서, 실제 강의에서 사용했던 풀이 방식을 오르비 인강에 그대로 담아 촬영해 놓았습니다. 이렇게 직접 현장에서 가르치는 방법을 인강에 그대로 담았기 때문에, 여러분이 한 번만 들어보셔도 귀납법을 쉽고 완벽하게 마스터하실 수 있을 거예요!
또한, 최근 트렌드에 맞춰서 꼼꼼하게 설명을 해놓았으니, 많은 관심 부탁드립니다. 다음 Column에서는 수2 함수의 극한과 연속에 대해 다뤄볼 예정이에요. 절댓값 함수의 극한과 같은 조금 난이도 있는 개념들을 쉽게 풀 수 있는 다양한 팁들도 소개할 예정이니 기대해 주세요!
궁금한 점이 있으면 언제든지 댓글이나 쪽지로 물어보세요.
친절하게 답변 드리겠습니다! 여러분의 학습을 항상 응원합니다!
도움이 되셨다면 좋아요! 팔로우! 부탁드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
문이유 문법N제 2회독 나기출 유대종 기실해 N기출 언매 마더텅 언매 리얼오리지널...
-
뭔가 했는데 항마력 레전드다 아 나 타 나니가 스키 아 나 타 어
-
명곡이군요 0
예엣날 국힙도 좋네요
-
나니가스키 15
쵸코민토 요리모 아나타~
-
님들은 뭐할거임
-
[뻘글]옛날부터 느꼈는데 자기 잘났다고 어필하는 글만큼은 그냥 거부감이 좆되네 13
세상 통달한 척 자기중심적 사고 Max. 저격아님뇨 ㅇㅇ
-
ㄹㅇ
-
ㄹㅇ
-
https://orbi.kr/00072740989/ 앞으로 리딸은 이거다
-
8층인가까지 무조건 계단으로만 다녔는데 건강은 ㅁㄹ겟고 밥먹고오면 꿀잠잘수잇엇음
-
나른나른해
-
돌고래 3
고래
-
여름엔 덥게~ 1
겨울엔 춥게~ 여름엔 덥게~ 겨울엔 춥게~
-
작수 22234 였고 홍대 붙었는데 부모님이 자퇴하고 재수하라고 하셔서 재수 중...
-
지금해야하는거 4
과탐 실모 4개
-
아으 힘들다 11
-
그냥 다 불안정해 잘 놀고 와도 뭔가 불안하고 그러네 안정형 애착 같은건 아닌듯
-
남자애들은 읍소하니까 ㅋㅋ 거리면서 빌려줬는데 감성 차인가
-
x가정해서 쓱 풀었는데, 가정말고 풀려면 어떻게 풀어야 하나요? 성상별, h개수별로...
-
로맨스 소설 쓰고 싶다 11
오르비에 써볼까 흐흐
-
요번 년도만 그런가? 기출에 비해서 너무 쉽게 풀려서 ;; 풀어보신 분들 어떠셨나요
-
갈수록 네임드들이 여차저차하여 산화하니 네임드의 공급 곡선이 수요곡선 아래로 내려가...
-
어뜨카지?
-
나같은 사람은 몇개를 나가도 할 수가 없음
-
Adhd특 2
약먹으면 감동적일정도로 집중이잘됨 갑자기 고능해진기분 뇌에 윤활제 넣어서 사고가 엄청 잘 돌아감
-
그치만, 모두에게차단엔딩이 날거같으니참아본다
-
가사에 심취해서 어느 순간 공부는 안하고 가사를 곱씹는 나 자신을 발견
-
우울글 가장한 기만글이 보통 그럼
-
집에서 혼자 고기꿔먹었는데 먹을때 느낌이 약간 쎄하더니 지금 배에서 막 괴생명체가...
-
눈나
-
이게 젤 좋은데 음음
-
살만 빼도 2
가능성이 높아집니다 여러분...
-
의대 증원하면 실력없는 의사 양성되냐 이거에요 대한민국 의사들 지금까지 뭐 했노...
-
한국계 조니 김. 우주정거장 도착…‘하버드대 의사, 조종사, 우주비행사’ 이력 화제 3
미국 항공우주국(NASA) 소속 한국계 우주비행사 조니 김이...
-
우승이 없는 팀한테 왜 지고 있는게냐
-
ㅋㅇㅇ
-
저격글 올라올까봐 ??:아 저 찐따새끼는 왜나옴
-
현재 고2인데 시발점 수12 35퍼센트까지 했는데 내신 준비한다고 시발점 한 달...
-
지1->세지로 사탐런 하려는데 엄마 어떻게 설득하죠... 1
재수생이고요 지1을 열심히 해오다가 아 이거 올해 지구 표본은 안그래도 고인...
-
수학으로 대학가는 수능 가보자
-
누나가 데리러 갈게❤️
-
정자=돈 이라면 4
난 부자였음
-
기만글 2
후드입고 미팅나갔는데 애프터 잡힘.
-
물론 수학 킬러나 풀때나 국어 고난도 인문지문읽을때, 탐구 어려운파트할때 속으로...
-
ㄱㅅㅎㄴㄷ ㄱㅅㅎㄴㄷ
-
욕 필요함 5
현역인데 이번 3모 때 방학때 쉬엄쉬엄 했는데도 생각보다 잘 나와서 공부를 해야하나...
-
윤성훈 개념, m스킬 검더텅 이렇게 할 건데 이거 세 개 끝내면 그 후로는 뭐함요?
-
괜히 어깨만 무겁게 한번도 안씀
-
얼마 전에 고든 램지 형님 영상에서 푸아그라와 카라멜라이즈 사과를 이용한 요리를...
그냥 믿고 맡기는 지형쌤...
감사합니다ㅎㅎ작년에 배웠던 내용이죠??

ㅋㅅㅋ정독했습니다 좋은내용이 많네요이 글이 진짜 유익한데