극한 상쇄 풀이는 오류가 아닙니다
게시글 주소: https://orbi.kr/00071570408

h(x)의 식이 우극한으로 정리된 형태라 복잡하니
g(x+) x g(x+2)로 편하게 바꾸겠습니다 다른 보기는 넘어가고 ㄴ보기만 보겠습니다
h(x)의 연속 여부를 따지고 있습니다. 일단 의심되는 지점으로 1, -1 , -3지점을 잡는건 당연하고 직접 함수식을 적어서 다뤄도 되지만 저는 g(x+) x g(x+2)의 극한식에서 처리했습니다 (두 관점이 정확히 같습니다)
h(x)의 좌극한값을 파악할때는 x값을 정의하는것이 뒤의 우극한을 보내는 것 보다 우선입니다 x를 1보다 작은 값, 좌극한 값으로 이미 정의되어있으니 뒤의 우극한이 붙어있어도 1의 왼쪽의 값을 보는것이 맞습니다.
즉 사진에 첨부된 것 처럼 g((1-)+)의 이중 극한 형태는 결국
g(1-)로 볼 수 있으니 결국 f(1-)와 같습니다 이때 f는 다항함수라는 조건이 있므로 f(1-) =f(1)과 같게 볼 수 있고 이 경우가 흔히 상쇄의 케이스로 말해지는 것 같습니다 이 경우 f(1)=1임을 확정할 수 없으므로 ㄴ 보기는 모순입니다
풀이에 오류가 있다 생각하시는 분은 댓글 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
반지름이 r인 원 O와 점 P가 있을 때, PO^2-r^2의 값을 점 P의 원 O에...
-
푸아앙
-
잔다 9
안녕히 주무세요
-
자러가요 9
요가러자
-
뭐야뭐야 2
오늘도 ㅇㅈ메타인거야?
-
그냥 샤프랑 볼펜으로 필기한거 올려도 되나요?
-
두번 세번 보면 널 더 안고 싶어 너와 커플링 커플링 손에 끼고서 함께 이 길을 걷고 싶어
-
아... 야동서독 옹 어째서 기만 메타의 역사는 쓰지 않으셨사옵니까 따흐흑......
-
오랜만에 오르비 0
ㅎㅎ
-
작년에 공통 13번까지 풀어서 맞추고 확통 2개틀림. (찍맞제외 3개) 이럴거면...
-
포켓몬 따위가 절대 못 비빔 디지몬 어드벤처는 감동이 있다
-
20일에 한 번만 함뇨
-
이투스 시대컨 0
이투스학원에서는 어떻게 시대컨 파는거임?그럴거면 걍 시대북스에서 팔면 안 되는건가
-
ㅁㅌㅊ? 13
. (펑)
-
n제 풀면 1등급이 될 수 잇겟지
-
탈릅은 안하니까 2
님들 몇년뒤에 한번 여기와보셈 그때도 저 있을거임ㅋㅋㅋ 아마?
-
휴릅하겠습니다. 2
6시간 30분 휴릅하겠습니다 모두 잘자요 제 꿈꿔요
-
이게 그나마 관심을 제일 많이 받기 때문. 촘스키의 생성문법, 생성음운론, 이런 거...
-
아 인스타씨발 0
그 야동추천 해 주는거 있잖아 그거 친구한테 자주 보내는데 바로밑에 리포스트 있는데...
-
학교에서 트와이스 노래 들으니까 친구들이 틀딱이녜 ㅋㅋ
-
그렇게 쉽게 깨지진 않을거야 너만을 사랑해
-
그 다음에 문제 읽음
-
박효신이 조아 나는
-
지금 하는거 보면 아무리봐도 탈릅은 안할거 같은데
-
병신같은 넘들이랑은 인간관계 자체를 맺지 않음 바로 할 수 잇는 최선의 싫어하는 티를 냄
-
맞은 문제들 강의 다 들으시나요? Day2개 분량 풀었는데 틀린게 따로 없고 다 확실하게 풀엇어여
-
잘생긴 옯붕이
-
taerinstudy ㄱㄱ 낼부터 진짜 피드 올릴게
-
휴릅이 하고싶네 11
덕코 줄까
-
ㅁㅌㅊ(혐주의) 8
짜스
-
강기분 완강했고 작수 백분위 70이엇는데(국어 못 함ㅜ) 시험만 치먄 ㅈㄴ 발발...
-
바로 너 1000덕 선착 5
-
오르비에서만 비호감 행동 하는건데 진짜로
-
페페 더 프로그 0
플리가 아주 맛있네요
-
좀 에반가
-
맞나
-
공부하기 시러 ㅗㅗㅗ
-
난 어딜가나 호감인데 10
ㄹㅇ인데
-
사문 기출문제집 1
사문 개념 검더텅으로 기출 1회독하고 복습하면서 기출회독 하려는데 회독할때는 무슨...
-
내 게시글에 댓글 달아주는 사람
-
궁금쓰
-
킥오프 쎈 1
고2 정시파이터 파데 -> 킥오프 다 풀고 워크북 얼른 끝내고 어삼쉬사 하려는데...
-
옯붕이들 잘자츄 11
내 꿈 꼬츄 굿나잇츄
-
오르비의 정상화는 대킹버드 아 젖지의 횡포에서 불쌍한 우리 중생들은 구원해...
-
기하미만잡 4
가하가짱임 그냥
-
하 이제 과제해야해
-
ㅈㄴ떨린다 0
-
너무 졸ㄹ령ㅛ 9
-
통계파트가 가장 어렵지않나요?? 개념은 되게 고차원적인것가튼데
아니요 정확히는 그 개념자체가 틀린거에요
이 문제푸는게 중요하기보단
그래서 다른 문제 나오면 틀릴수있어요
본문에 나온 부분 중 개념 오류는 없다고 생각하는데 어느 부분이 틀렸다고 생각하시나요??
위에서 쓰신 풀이는 아무 문제도 없어요
문제는 “g((1-)+)” (=lim (x->1-) lim (t->x+) g(t)) = g(1)이 다항함수가 아닌 케이스에서 일반적으로 성립하지는 않는다는 거죠
극단적으로, g(x) = 2(x-1) sin(1/(x-1)) (x<1, x는 무리수), (x-1) sin (1/(x-1)) (x<1, x는 유리수), 0 (x>=1)에 본문의 논리를 적용하려 한다면, g((1-)+) = lim (x->1-) g(x)조차 성립하지 않아요(첫 번째 극한은 정의되지 않지만, 두 번째 극한은 정의됨)
극한상쇄 풀이가 욕먹는 건 마치 항상 성립하는 내용처럼 말해서 그런 거에요
예를 들어 방정식 dy/dx = 1, y(0)=0을 y에 대해서 풀 때, 위아래의 d를 ‘약분‘해서 y/x=1, y=x와 같이 얻는다면 답은 맞고 풀이도 ‘미분계수=기울기‘라는 점에 집중하면 어느정도 정당화가 가능하지만, dy/dx = x같은 거에서는 성립하지 않으니까 바람직한 풀이는 아니겠죠
저는 2024 6월 미적분 28번과 같은 상황이라 생각하는데요 그 문제 역시 특정 풀이법 (f(x)를 구하는 것 등)이 문제 조건이 조금만 바뀌었어도 바람직한 풀이가 아니라는 논란이 있었죠
고등 수학과정에서 출제진들이 바라던 풀이는 딱 본문정도라고 저는 생각합니다
풀이는 문제에서 주어진 조건 상황하에서 성립하면 문제가 없는거지 굳이 문제에서 나오지 않은 상황을 생각하여 문제삼는게 필요가 없다는게 제 입장입니다.
조금 더 예시를 들어보면
당장 우리가 도함수의 극한의 존재여부로 함수 f(x)의 미분가능성을 따지는게 (연속임이 전제 되었을 경우)
수학 2 문제에서는 전혀 잘못된 것이 아니잖아요?
그런데 우리가 굳이 xsin(1/x)과 같은 무한 진동함수의 반례를 생각하면서 도함수의 극한을 쓰는게 옳지 않다!
라고 하지는 않습니다
실제로 님이 문제삼으시는 문제의 형태가 나왔다면 상쇄라는 해당 풀이는 애초에 나오지 않았다는게 제 입장입니다
저건 아예 글의 기본적 가정조차 성립하지 않는 극단적인 케이스로 잡은 거고, 그냥 g(x)=x (x<1), g(x)=0 (x>=1)만 들고 와도 g((1-)+)=g(1)이 일반적으로 성립하지 않는 건 알 수 있어요
진동 발산의 케이스는 g((1-)+)=g(1-)조차 성립하지 않는 걸 보여주려고 제시한 거에요
그 상황은 다른 상황을 제시하셨으니까요
상쇄가 가능했던 "이유"는 수능 14번 문제의 경우에는
f(x)가 다항함수라 좌극한 값이 곧 함숫값으로 확정이 되성 가능했던 거죠
저 상황에서는 잡으신 함수에 우극한을 취해봤자 그대로인 함수가 되는거니 당연히 g((1-)+)는 함숫값과 같지 않는거니 저런 상황이었다면 애초에 상쇄 풀이가 나오지 않았다는게 제 생각입니다
앞에서 말했던 거랑도 겹치는데, “현우진은 극한상쇄, 즉 g((1-)+)=g(1)과 같은 식이 항상 성립한다고 주장한 게 아니라, 그 문제의 상황에서만 성립한다고 말한 거다“라고 밀고 나간다면, 해설에서 답이 틀린 것도 아니니까 ‘해설에 오류가 없다‘고 말할 수는 있어요
문제는, 글쓴이님과 다르게(그리고 현우진 강사님의 의도와는 별개로) 대부분의 학생들은 저 극한상쇄를 항상, 또는 최소한 문제의 상황보다 훨신 넓은 범주에서 성립하는 걸로 이해했다는 거죠. 그래서 오개념 논란이 생긴 거고요.
수학은 객관성의 과목이지만, 결국 자연어에는 애매함이 있을 수밖에 없어요. 하지만 현우진 강사님의 말을 객관적으로 해석해서 해당 풀이가 어떤 의미였는지를 알 수는 없어도, 아직도 231114의 수분감 해설을 듣고 오개념을 가진 채 질문하는 학생들이 있는 걸 보면 바람직하지 못한 해설이라고는 할 수 있을 것 같네요.