극한 상쇄 풀이는 오류가 아닙니다
게시글 주소: https://orbi.kr/00071570408

h(x)의 식이 우극한으로 정리된 형태라 복잡하니
g(x+) x g(x+2)로 편하게 바꾸겠습니다 다른 보기는 넘어가고 ㄴ보기만 보겠습니다
h(x)의 연속 여부를 따지고 있습니다. 일단 의심되는 지점으로 1, -1 , -3지점을 잡는건 당연하고 직접 함수식을 적어서 다뤄도 되지만 저는 g(x+) x g(x+2)의 극한식에서 처리했습니다 (두 관점이 정확히 같습니다)
h(x)의 좌극한값을 파악할때는 x값을 정의하는것이 뒤의 우극한을 보내는 것 보다 우선입니다 x를 1보다 작은 값, 좌극한 값으로 이미 정의되어있으니 뒤의 우극한이 붙어있어도 1의 왼쪽의 값을 보는것이 맞습니다.
즉 사진에 첨부된 것 처럼 g((1-)+)의 이중 극한 형태는 결국
g(1-)로 볼 수 있으니 결국 f(1-)와 같습니다 이때 f는 다항함수라는 조건이 있므로 f(1-) =f(1)과 같게 볼 수 있고 이 경우가 흔히 상쇄의 케이스로 말해지는 것 같습니다 이 경우 f(1)=1임을 확정할 수 없으므로 ㄴ 보기는 모순입니다
풀이에 오류가 있다 생각하시는 분은 댓글 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
0.3짜리 없나? 만년필 잘알 질문좀
-
2회독을 하라고 강의를 두 번 올려주시다니.. 패스가 없으면 필기노트를 구매할 수 없다 이건가..
-
안녕하세요! 오랜만에 인사드립니다:) 오늘은 제가 생각하는 "국어 공부의 4가지...
-
비물질문화의변화속도는 일차함수니 비물질문화의변화량은 이차함수인가요???...
-
예쁜여르비만 3
너가왜오냐?
-
궁금한게 있는데 4
외부음식에 음료수도 포함되는거냐? 코노왔는데 외부음식 금지라더라 그래서 편의점에서...
-
'니네 애들 인성 조져놓을거임 ㅅㄱ' 이러면 어캐됨? 전국 교사들 단체로 한다면
-
지금 중간 26일 남앗고 생명 한 번도 안 해봣는데 둘 중에 뭐 들어야 할까요?ㅠㅠ...
-
흠냐뇨잇
-
내접의 조건이 대각의 합 180도인 걸 처음 알았음;;;
-
고딩 때처럼 이 씨발 여기 있을 게 아닌데,,라는 생각이 계속 드네
-
수학쌤 교무실 책상 옆에 있는 문제집 뭐있는지 엿보면됨 그렇게 해서 4등급받음 이상...
-
무슨 차이죠? 비슷한 것 같은데
-
블랙라벨 싹 다 허수픽 이었음
-
배걍화면으로 딱임
-
베짱이가되. 13
으으으윽
-
깨우기 4번 눌렀는데 아직도 시작안함
-
3시 55분에 학교 가면 지각처리인가요
-
고딩 분들 7
수학 내신 어떤 책으로 대비 하세요?
-
?
-
친구여친 친구가 야구장 데리고 다니더니 결국 유니폼사고 막 인스타에 야구글도...
-
카택 호출 취소 0
카택 호츌 취소하고 하고 다시 부르면 더 오래걸리나요? 오늘 거의 10분 기다림
-
수능시간표처럼 점심밥먹고 1시부터 공부시작하면 꼭 3시넘어서부터 슬슬 배고파져서...
-
뭘로 대비하심? 일품 블랙라벨 너기출 아직도 푸나
-
3월부터 시작했고 1학기는 학고받고 할 생각입니다. 일단 공부 안한지 3개월...
-
탄핵 될 거 같습니다. 아까 잠깐 잠들었는데 꿈속에서 심멘이 나타나서 “탄핵“...
-
걍 기출부터 할까
-
왤케 배부르지 4
음냐링
-
작수 언매 미적 영어 사문 지구 94 87 1 95 74고 지구버리고 한지하는중인데...
-
준비가 많이 다르나? 수능 준비하다가 내신 보는거 아닌가? 어떻게 접근 해야하지?
-
오렌지다
-
2학년때는 학점을 잘 받아야하지만 아직 정신을 차리지 못한듯 열정이 읍서 열정이
-
문제를 하나 풀었다고 해서 그 문제에 대한 학습이 끝난 게 아닙니다. 하나의...
-
높공인가여
-
끝나고 뒤에 다음수업있던거 깜빡하고 집옴 어쩐지지하철에사람이적더라
-
한화 이글스는 2
왜 인기가 많아요?
-
조정식 voca랑 vocabulary랑 책 다르던데 차이 있음? +어플은 뭐임
-
감이 안잡힌다 요즘 수학 내신 교재 뭐씀? 본인은 정석 쎈 했었는데...
-
저녁은 치킨 시켜먹을까 10
맛있는 치킨추천좀
-
과학기술 지문은 진짜 어마어마하다... 풀다가 토할뻔
-
삼수기록 6일차 0
국어 기출 2016수능 항부력 리트300제 2022 4-6 수학 수1 4의규칙 수열...
-
나도 살짝 맘속으로 안 되었으면 하긴 한다만 (솔직히 주변사람들 때문에) 지금 안...
-
참지못함
-
못참잖아
-
2026학년도 서울대 입학전형 안내(2025년 04월01일 발표) 0
2026학년도 서울대 입학전형 안내(2025년.. : 네이버블로그
-
님들 내일뭐할거임? 12
1윤씨 관심없고 공부하기 2.하루종일 뉴스보기,정치커뮤보기
-
반수의 아이러니 4
6월부터 달려서 될 지능이 작년 1년 달려서 왜 안되는
-
의대,약대,서울대 선배들이 직접 본인의 경험담을 공유해주는 무료 세미나가 있어...
-
심각함 곧 죽으려고 그러나
아니요 정확히는 그 개념자체가 틀린거에요
이 문제푸는게 중요하기보단
그래서 다른 문제 나오면 틀릴수있어요
본문에 나온 부분 중 개념 오류는 없다고 생각하는데 어느 부분이 틀렸다고 생각하시나요??
위에서 쓰신 풀이는 아무 문제도 없어요
문제는 “g((1-)+)” (=lim (x->1-) lim (t->x+) g(t)) = g(1)이 다항함수가 아닌 케이스에서 일반적으로 성립하지는 않는다는 거죠
극단적으로, g(x) = 2(x-1) sin(1/(x-1)) (x<1, x는 무리수), (x-1) sin (1/(x-1)) (x<1, x는 유리수), 0 (x>=1)에 본문의 논리를 적용하려 한다면, g((1-)+) = lim (x->1-) g(x)조차 성립하지 않아요(첫 번째 극한은 정의되지 않지만, 두 번째 극한은 정의됨)
극한상쇄 풀이가 욕먹는 건 마치 항상 성립하는 내용처럼 말해서 그런 거에요
예를 들어 방정식 dy/dx = 1, y(0)=0을 y에 대해서 풀 때, 위아래의 d를 ‘약분‘해서 y/x=1, y=x와 같이 얻는다면 답은 맞고 풀이도 ‘미분계수=기울기‘라는 점에 집중하면 어느정도 정당화가 가능하지만, dy/dx = x같은 거에서는 성립하지 않으니까 바람직한 풀이는 아니겠죠
저는 2024 6월 미적분 28번과 같은 상황이라 생각하는데요 그 문제 역시 특정 풀이법 (f(x)를 구하는 것 등)이 문제 조건이 조금만 바뀌었어도 바람직한 풀이가 아니라는 논란이 있었죠
고등 수학과정에서 출제진들이 바라던 풀이는 딱 본문정도라고 저는 생각합니다
풀이는 문제에서 주어진 조건 상황하에서 성립하면 문제가 없는거지 굳이 문제에서 나오지 않은 상황을 생각하여 문제삼는게 필요가 없다는게 제 입장입니다.
조금 더 예시를 들어보면
당장 우리가 도함수의 극한의 존재여부로 함수 f(x)의 미분가능성을 따지는게 (연속임이 전제 되었을 경우)
수학 2 문제에서는 전혀 잘못된 것이 아니잖아요?
그런데 우리가 굳이 xsin(1/x)과 같은 무한 진동함수의 반례를 생각하면서 도함수의 극한을 쓰는게 옳지 않다!
라고 하지는 않습니다
실제로 님이 문제삼으시는 문제의 형태가 나왔다면 상쇄라는 해당 풀이는 애초에 나오지 않았다는게 제 입장입니다
저건 아예 글의 기본적 가정조차 성립하지 않는 극단적인 케이스로 잡은 거고, 그냥 g(x)=x (x<1), g(x)=0 (x>=1)만 들고 와도 g((1-)+)=g(1)이 일반적으로 성립하지 않는 건 알 수 있어요
진동 발산의 케이스는 g((1-)+)=g(1-)조차 성립하지 않는 걸 보여주려고 제시한 거에요
그 상황은 다른 상황을 제시하셨으니까요
상쇄가 가능했던 "이유"는 수능 14번 문제의 경우에는
f(x)가 다항함수라 좌극한 값이 곧 함숫값으로 확정이 되성 가능했던 거죠
저 상황에서는 잡으신 함수에 우극한을 취해봤자 그대로인 함수가 되는거니 당연히 g((1-)+)는 함숫값과 같지 않는거니 저런 상황이었다면 애초에 상쇄 풀이가 나오지 않았다는게 제 생각입니다
앞에서 말했던 거랑도 겹치는데, “현우진은 극한상쇄, 즉 g((1-)+)=g(1)과 같은 식이 항상 성립한다고 주장한 게 아니라, 그 문제의 상황에서만 성립한다고 말한 거다“라고 밀고 나간다면, 해설에서 답이 틀린 것도 아니니까 ‘해설에 오류가 없다‘고 말할 수는 있어요
문제는, 글쓴이님과 다르게(그리고 현우진 강사님의 의도와는 별개로) 대부분의 학생들은 저 극한상쇄를 항상, 또는 최소한 문제의 상황보다 훨신 넓은 범주에서 성립하는 걸로 이해했다는 거죠. 그래서 오개념 논란이 생긴 거고요.
수학은 객관성의 과목이지만, 결국 자연어에는 애매함이 있을 수밖에 없어요. 하지만 현우진 강사님의 말을 객관적으로 해석해서 해당 풀이가 어떤 의미였는지를 알 수는 없어도, 아직도 231114의 수분감 해설을 듣고 오개념을 가진 채 질문하는 학생들이 있는 걸 보면 바람직하지 못한 해설이라고는 할 수 있을 것 같네요.