극한 상쇄 풀이는 오류가 아닙니다
게시글 주소: https://orbi.kr/00071570408

h(x)의 식이 우극한으로 정리된 형태라 복잡하니
g(x+) x g(x+2)로 편하게 바꾸겠습니다 다른 보기는 넘어가고 ㄴ보기만 보겠습니다
h(x)의 연속 여부를 따지고 있습니다. 일단 의심되는 지점으로 1, -1 , -3지점을 잡는건 당연하고 직접 함수식을 적어서 다뤄도 되지만 저는 g(x+) x g(x+2)의 극한식에서 처리했습니다 (두 관점이 정확히 같습니다)
h(x)의 좌극한값을 파악할때는 x값을 정의하는것이 뒤의 우극한을 보내는 것 보다 우선입니다 x를 1보다 작은 값, 좌극한 값으로 이미 정의되어있으니 뒤의 우극한이 붙어있어도 1의 왼쪽의 값을 보는것이 맞습니다.
즉 사진에 첨부된 것 처럼 g((1-)+)의 이중 극한 형태는 결국
g(1-)로 볼 수 있으니 결국 f(1-)와 같습니다 이때 f는 다항함수라는 조건이 있므로 f(1-) =f(1)과 같게 볼 수 있고 이 경우가 흔히 상쇄의 케이스로 말해지는 것 같습니다 이 경우 f(1)=1임을 확정할 수 없으므로 ㄴ 보기는 모순입니다
풀이에 오류가 있다 생각하시는 분은 댓글 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일의 순서와 목적을 구분 못하는 거랑 같은 듯. .. 브레인크래커 1강만 봐도...
-
ㄱㄴ?
-
실모 보관하심? 7
브릿지같은 하프모나 실모 오답만 하고 버림? 아니면 따로 보관해둠??
-
오늘 즐길것만 즐겨야겟다
-
정답이 없는 분야에 대해 말 길어지면 결국 싸움남 ㅋㅋ 가족들이랑도 안함
-
1,2학년때 교과성적이랑 세특에 신경을 쓸려고 아예 공교를 안들었고 지금 고3인데...
-
피부과 예비1번임.. 13
밥먹고와야지
-
평가원 #~#
-
이렇게 생각하는 몇몇 보이네 문재인 겪어보면 알겠지만 이런애들이 내란견보다 더 위험하긴함
-
잇올 6모 0
홈페이지 들어가서 보니까 신청 성공햇는데 문자는 왜 안 오지 원래 늦게 옴?
-
어디 간 거냐 ㅅㅂ... 버스에서 좀 볼라 했는데
-
루비짱 0
하이~ 나니가 스키?
-
그런가요?
-
팔릴거 같은데
-
점심 1
삼겹살+비빔면 개꿀맛
-
6월에 6모성적 받기전까지 좀 쉬어야겠다 ㅎㅎㅎ
-
네
-
미궁속으로.... 난이도 업업 해서 22수능 어게인 가나?
-
이재명, 가천대 '이름도 모르는 대학' 발언 논란에 공식 사과 지난 4일 이재명...
-
국어 -25수능과 유사 수학-공통불 미적 약불 과탐-1컷 죄다 47로 맞춤 ㅇㅇ
-
안녕하세요. 제 상황은 전 에 적었듯이 약 한 달 전, 회사를 퇴직하고 본격적으로...
-
묘하게 성대 교표 닮음
-
다행이다 0
진짜 개쫄렸네
-
29수열이 300배 조음
-
보통 일단 그냥 넘기나? 아니면 다른 강의나 구글에서 찾아보고 그럼?
-
24수능 꽤 괜찮다 생각했는데 비상식적인 독서 난이도하락 눈알굴리기 테스트 문학...
-
가 잘맞는 거 같음. .... 처음엔 했던 소리 또 하면 머리에 쥐날 거 같은데...
-
ㅇㄷㄴㅂㅌ
-
야 이 의뱃들아 3
나도 의뱃 줘
-
강기원 어싸에 매일학습 무등비/삼도극/확률통계 5문항씩 들어있었고
-
???:수능의 정상화 실패
-
한완기 교사경이랑 정병호t n제 고민중인데 뭐가 더 나을까? 지금은...
-
사문 사설 추천 2
사문 사설 모고 추천해주세요 강k 사만다 좋다는데 의견이 너무 다양해서 뭘 먼저...
-
대병파산 간호법 싹다 통관데 윤통 탄핵하나로 그게 본전치기는 되냐 ㅋ
-
대륙남 보고왔는데 ㅈㄴ 충격이네
-
난 기트남어 힛
-
잇올 4
오늘 제자리에 앉아서 공부하려는데 엉덩이가 축축해서 봤더니 의자에 물이 흥건해서...
-
빅이벤트가 연속으로
-
먼 무등비 삼도극이여
-
6모 만점을 받아오면 바로 앞에서 ’드릴‘을 풀어도 뭐라 하지 않겠다 ㄷㄷ
-
버리고 92맞음
-
이제 진짜 해야되죠? 계속 유기했는디..
-
그냥 의대생들 다 재적시켜버리고 26 27 28 정시모집 확대 5
이재명은 합니다
-
걍 이재명 싫어하는거였네
-
대 재 명
-
아이고 0
https://n.news.naver.com/mnews/article/081/0003...
아니요 정확히는 그 개념자체가 틀린거에요
이 문제푸는게 중요하기보단
그래서 다른 문제 나오면 틀릴수있어요
본문에 나온 부분 중 개념 오류는 없다고 생각하는데 어느 부분이 틀렸다고 생각하시나요??
위에서 쓰신 풀이는 아무 문제도 없어요
문제는 “g((1-)+)” (=lim (x->1-) lim (t->x+) g(t)) = g(1)이 다항함수가 아닌 케이스에서 일반적으로 성립하지는 않는다는 거죠
극단적으로, g(x) = 2(x-1) sin(1/(x-1)) (x<1, x는 무리수), (x-1) sin (1/(x-1)) (x<1, x는 유리수), 0 (x>=1)에 본문의 논리를 적용하려 한다면, g((1-)+) = lim (x->1-) g(x)조차 성립하지 않아요(첫 번째 극한은 정의되지 않지만, 두 번째 극한은 정의됨)
극한상쇄 풀이가 욕먹는 건 마치 항상 성립하는 내용처럼 말해서 그런 거에요
예를 들어 방정식 dy/dx = 1, y(0)=0을 y에 대해서 풀 때, 위아래의 d를 ‘약분‘해서 y/x=1, y=x와 같이 얻는다면 답은 맞고 풀이도 ‘미분계수=기울기‘라는 점에 집중하면 어느정도 정당화가 가능하지만, dy/dx = x같은 거에서는 성립하지 않으니까 바람직한 풀이는 아니겠죠
저는 2024 6월 미적분 28번과 같은 상황이라 생각하는데요 그 문제 역시 특정 풀이법 (f(x)를 구하는 것 등)이 문제 조건이 조금만 바뀌었어도 바람직한 풀이가 아니라는 논란이 있었죠
고등 수학과정에서 출제진들이 바라던 풀이는 딱 본문정도라고 저는 생각합니다
풀이는 문제에서 주어진 조건 상황하에서 성립하면 문제가 없는거지 굳이 문제에서 나오지 않은 상황을 생각하여 문제삼는게 필요가 없다는게 제 입장입니다.
조금 더 예시를 들어보면
당장 우리가 도함수의 극한의 존재여부로 함수 f(x)의 미분가능성을 따지는게 (연속임이 전제 되었을 경우)
수학 2 문제에서는 전혀 잘못된 것이 아니잖아요?
그런데 우리가 굳이 xsin(1/x)과 같은 무한 진동함수의 반례를 생각하면서 도함수의 극한을 쓰는게 옳지 않다!
라고 하지는 않습니다
실제로 님이 문제삼으시는 문제의 형태가 나왔다면 상쇄라는 해당 풀이는 애초에 나오지 않았다는게 제 입장입니다
저건 아예 글의 기본적 가정조차 성립하지 않는 극단적인 케이스로 잡은 거고, 그냥 g(x)=x (x<1), g(x)=0 (x>=1)만 들고 와도 g((1-)+)=g(1)이 일반적으로 성립하지 않는 건 알 수 있어요
진동 발산의 케이스는 g((1-)+)=g(1-)조차 성립하지 않는 걸 보여주려고 제시한 거에요
그 상황은 다른 상황을 제시하셨으니까요
상쇄가 가능했던 "이유"는 수능 14번 문제의 경우에는
f(x)가 다항함수라 좌극한 값이 곧 함숫값으로 확정이 되성 가능했던 거죠
저 상황에서는 잡으신 함수에 우극한을 취해봤자 그대로인 함수가 되는거니 당연히 g((1-)+)는 함숫값과 같지 않는거니 저런 상황이었다면 애초에 상쇄 풀이가 나오지 않았다는게 제 생각입니다
앞에서 말했던 거랑도 겹치는데, “현우진은 극한상쇄, 즉 g((1-)+)=g(1)과 같은 식이 항상 성립한다고 주장한 게 아니라, 그 문제의 상황에서만 성립한다고 말한 거다“라고 밀고 나간다면, 해설에서 답이 틀린 것도 아니니까 ‘해설에 오류가 없다‘고 말할 수는 있어요
문제는, 글쓴이님과 다르게(그리고 현우진 강사님의 의도와는 별개로) 대부분의 학생들은 저 극한상쇄를 항상, 또는 최소한 문제의 상황보다 훨신 넓은 범주에서 성립하는 걸로 이해했다는 거죠. 그래서 오개념 논란이 생긴 거고요.
수학은 객관성의 과목이지만, 결국 자연어에는 애매함이 있을 수밖에 없어요. 하지만 현우진 강사님의 말을 객관적으로 해석해서 해당 풀이가 어떤 의미였는지를 알 수는 없어도, 아직도 231114의 수분감 해설을 듣고 오개념을 가진 채 질문하는 학생들이 있는 걸 보면 바람직하지 못한 해설이라고는 할 수 있을 것 같네요.