극한 상쇄 풀이는 오류가 아닙니다
게시글 주소: https://orbi.kr/00071570408

h(x)의 식이 우극한으로 정리된 형태라 복잡하니
g(x+) x g(x+2)로 편하게 바꾸겠습니다 다른 보기는 넘어가고 ㄴ보기만 보겠습니다
h(x)의 연속 여부를 따지고 있습니다. 일단 의심되는 지점으로 1, -1 , -3지점을 잡는건 당연하고 직접 함수식을 적어서 다뤄도 되지만 저는 g(x+) x g(x+2)의 극한식에서 처리했습니다 (두 관점이 정확히 같습니다)
h(x)의 좌극한값을 파악할때는 x값을 정의하는것이 뒤의 우극한을 보내는 것 보다 우선입니다 x를 1보다 작은 값, 좌극한 값으로 이미 정의되어있으니 뒤의 우극한이 붙어있어도 1의 왼쪽의 값을 보는것이 맞습니다.
즉 사진에 첨부된 것 처럼 g((1-)+)의 이중 극한 형태는 결국
g(1-)로 볼 수 있으니 결국 f(1-)와 같습니다 이때 f는 다항함수라는 조건이 있므로 f(1-) =f(1)과 같게 볼 수 있고 이 경우가 흔히 상쇄의 케이스로 말해지는 것 같습니다 이 경우 f(1)=1임을 확정할 수 없으므로 ㄴ 보기는 모순입니다
풀이에 오류가 있다 생각하시는 분은 댓글 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다시 런칠 각을 잡아야겠다
-
안녕하세요 저능부엉이입니다 오늘은 부정적분 파트에 대한 칼럼으로 찾아왔습니다 오늘...
-
팝콘맛있다 0
-
미적분 자작문제 0
꽤 난이도 있습니다!
-
질문받습니다 1
넵
-
딱지 시스템을 잘 몰라서 그러는데 대충 완장같은 거 아님? 특정은 왜 당하는 거지...
-
심찬우 강의 1
작년 국어 심찬우 듣고 올해 또 들으시는 분 있으세요? 교재나 수업 내용...
-
1358343
-
개념 언제 다 끝내냐
-
하이ㅅ님한테 그려드린거지만 제가 좀 프필로 쓰겠슴다
-
한양대 의대는과탐 가산점없는걸로아는데 그럼 경희한이랑 합격컷 비슷하다아님요?...
-
갈만한건가요
-
별거도 아닌걸로 저격하고 지랄이네,,
-
전에 올렸던거 다시 복구 아예 불가인가요?
-
거는 사람이 없네 ㅠㅠ
-
맞팔하실분 4
있습니까?
-
흠냐뇨잇
-
철면피깔고 칼럼 올릴까 11
대신 진짜 도움되게 열심히 써야할듯
-
답답하네
-
저격 하나만 할게요 13
비갤 전 파딱이 할말은 아닌거같아요
-
삼반할거면 0
밥약 걸면안되나 사실 내가 사도 되는데... 그냥 친해지고 싶은건데..
-
점마 해킹당함? 3
.
-
후배가 사달라해야해……??? 진짜로?
-
Ufc였네
-
의대 가고싶었던 25학번은 운이 좋았네 평년보다 낮은 성적으로도 들어갔으니 특히 충청 지역인재
-
아오
-
엄마없는 주식 그건 바로 테슬라
-
걍 와플 좋아한댓는데 우리집앞 와대가 ㅈㄴ맛잇어서 오 와플먹자 햇는데이게플러팅인가요
-
진짜 중요한건 바로 노무현은 살아있다는 거임.
-
병신대 가서 뭐함? 전장인데 그냥 가지말까? 에휴뇨이
-
병호로 넘어간 게 진짜 다행이다 인강 첫해를 거르라는건 일리가 있구나
-
??? : 첫판부터 미드 가렌 하려고 하는거 어디서 참고로 이분 붕괴하고 있습니다
-
힘들다 2
어제부터 정신적으로 힘드네 그냥 왜 우울한지도 모르겠는데 그냥 우울하다
-
아떨리네
-
상디 너가 찾던 올블루는 여기 있다
-
제가 12월부터 지금까지 알바하면서 돈을 모아야 되서 공부를 거의...
-
이럴라면 머리가 좋아야게ㅛ지..?ㅠ
-
기분전환겸 수학모고 오류검토 도울 천사분 (1번-10번) 0
심심하시면 가볍게 풀어보시고 문제 오류 없는지 답글 남겨주세요
-
무조건 순번대로 보내서 뒷자리는 꿈도 못꾸는데 어카냐 ㅠㅠ
-
잔을 내려놓기가 무!섭!게! <- 이거 울 학교에만 있음? 4
이거랑 연대책임! 연대책임! 연세 유니버시티 리스폰시빌리티
-
앗싸 홍삼 6
에브리바디 홍삼~~!!
-
고등학교때부터 컴공만 보고 살았는데 현역때는 국숭세단 지원하고 떨어졌습니다....
-
지구4틀 6
나머지 과목 전체에서 2틀 걍 레전드스캠과목
-
3월까지 실전개념 (고수탑, 뉴런) 복습하면서 기출 하고 4월부터 엔제드가도 안늦겟죠?
-
첫 수업때 강의실 추워서 팔짱끼고 있었는데 앞에 애가 걸려서 살았다
-
사실은편견이아닐까
-
어짜피 사회 나가면 중=경=건=시 > 동=외=홍
-
너 이런애 아니잖나 빨리 나락 가라고
-
재업임
-
아싸 피어싱이 0
둔타타둔타
아니요 정확히는 그 개념자체가 틀린거에요
이 문제푸는게 중요하기보단
그래서 다른 문제 나오면 틀릴수있어요
본문에 나온 부분 중 개념 오류는 없다고 생각하는데 어느 부분이 틀렸다고 생각하시나요??
위에서 쓰신 풀이는 아무 문제도 없어요
문제는 “g((1-)+)” (=lim (x->1-) lim (t->x+) g(t)) = g(1)이 다항함수가 아닌 케이스에서 일반적으로 성립하지는 않는다는 거죠
극단적으로, g(x) = 2(x-1) sin(1/(x-1)) (x<1, x는 무리수), (x-1) sin (1/(x-1)) (x<1, x는 유리수), 0 (x>=1)에 본문의 논리를 적용하려 한다면, g((1-)+) = lim (x->1-) g(x)조차 성립하지 않아요(첫 번째 극한은 정의되지 않지만, 두 번째 극한은 정의됨)
극한상쇄 풀이가 욕먹는 건 마치 항상 성립하는 내용처럼 말해서 그런 거에요
예를 들어 방정식 dy/dx = 1, y(0)=0을 y에 대해서 풀 때, 위아래의 d를 ‘약분‘해서 y/x=1, y=x와 같이 얻는다면 답은 맞고 풀이도 ‘미분계수=기울기‘라는 점에 집중하면 어느정도 정당화가 가능하지만, dy/dx = x같은 거에서는 성립하지 않으니까 바람직한 풀이는 아니겠죠
저는 2024 6월 미적분 28번과 같은 상황이라 생각하는데요 그 문제 역시 특정 풀이법 (f(x)를 구하는 것 등)이 문제 조건이 조금만 바뀌었어도 바람직한 풀이가 아니라는 논란이 있었죠
고등 수학과정에서 출제진들이 바라던 풀이는 딱 본문정도라고 저는 생각합니다
풀이는 문제에서 주어진 조건 상황하에서 성립하면 문제가 없는거지 굳이 문제에서 나오지 않은 상황을 생각하여 문제삼는게 필요가 없다는게 제 입장입니다.
조금 더 예시를 들어보면
당장 우리가 도함수의 극한의 존재여부로 함수 f(x)의 미분가능성을 따지는게 (연속임이 전제 되었을 경우)
수학 2 문제에서는 전혀 잘못된 것이 아니잖아요?
그런데 우리가 굳이 xsin(1/x)과 같은 무한 진동함수의 반례를 생각하면서 도함수의 극한을 쓰는게 옳지 않다!
라고 하지는 않습니다
실제로 님이 문제삼으시는 문제의 형태가 나왔다면 상쇄라는 해당 풀이는 애초에 나오지 않았다는게 제 입장입니다
저건 아예 글의 기본적 가정조차 성립하지 않는 극단적인 케이스로 잡은 거고, 그냥 g(x)=x (x<1), g(x)=0 (x>=1)만 들고 와도 g((1-)+)=g(1)이 일반적으로 성립하지 않는 건 알 수 있어요
진동 발산의 케이스는 g((1-)+)=g(1-)조차 성립하지 않는 걸 보여주려고 제시한 거에요
그 상황은 다른 상황을 제시하셨으니까요
상쇄가 가능했던 "이유"는 수능 14번 문제의 경우에는
f(x)가 다항함수라 좌극한 값이 곧 함숫값으로 확정이 되성 가능했던 거죠
저 상황에서는 잡으신 함수에 우극한을 취해봤자 그대로인 함수가 되는거니 당연히 g((1-)+)는 함숫값과 같지 않는거니 저런 상황이었다면 애초에 상쇄 풀이가 나오지 않았다는게 제 생각입니다
앞에서 말했던 거랑도 겹치는데, “현우진은 극한상쇄, 즉 g((1-)+)=g(1)과 같은 식이 항상 성립한다고 주장한 게 아니라, 그 문제의 상황에서만 성립한다고 말한 거다“라고 밀고 나간다면, 해설에서 답이 틀린 것도 아니니까 ‘해설에 오류가 없다‘고 말할 수는 있어요
문제는, 글쓴이님과 다르게(그리고 현우진 강사님의 의도와는 별개로) 대부분의 학생들은 저 극한상쇄를 항상, 또는 최소한 문제의 상황보다 훨신 넓은 범주에서 성립하는 걸로 이해했다는 거죠. 그래서 오개념 논란이 생긴 거고요.
수학은 객관성의 과목이지만, 결국 자연어에는 애매함이 있을 수밖에 없어요. 하지만 현우진 강사님의 말을 객관적으로 해석해서 해당 풀이가 어떤 의미였는지를 알 수는 없어도, 아직도 231114의 수분감 해설을 듣고 오개념을 가진 채 질문하는 학생들이 있는 걸 보면 바람직하지 못한 해설이라고는 할 수 있을 것 같네요.