[자작문제 해설] 수1 삼각함수 문항
게시글 주소: https://orbi.kr/00071486499
아까 올린 이 문제에 대한 해설입니다.
1번 풀이는 조금 많이 발상적인 면이 강하고, 2번 풀이가 약간 정석적인 루트라고 볼 수 있을 것 같습니다.
관건은 sin값이 같다는 조건을 어떻게 해석하느냐 였는데, 아마 해당 조건의 해석 방향이 수1보단 중등 기하적인 성격이 강해 낯설어하셨던 것 같습니다.
다음에도 재미난 문제로 찾아뵙겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
여기 거리에서 보이기 힘든 과잠도 보이는디
-
기적의 논리 1
R(x) : exists in reality E(x) : exists 1. ∀x...
-
아니 범주 끊어읽으라고 할때마다 뭉탱이로 읽지말라고 하시누
-
울고잇어 0
할게 많네
-
그렇다는데
-
윤성훈 강의평 삭제하네 11
잡담한다고 좀 찡찡댄거 말고 이상한말은 안했을건데 #~#
-
탄핵되면 무등비 삼도극 재등장할수도 있음... 11월까지만 버텨다오...
-
지금부터 12시까지 밥 먹어야지
-
교재 주문했는데 파본 받음 문의했는데 사소한 파본이라 아무 보상 못해준다고 그냥...
-
퇴근 10
ㄱㅇㄷ! 집간다오예
-
여붕이 등장 6
반겨라
-
1교시를 자야하는데 1교시가 잠을 못 자는 과목인 거임 (쌤이 깨우심) 진짜 힘들어...
-
중경외시라인 반수생 통통이 작수 공통 4틀 낮 2 3모 방금 풀어보니 79점...
-
[상황] 생윤 사회계약설 로크,홉스 인강 질답중 [[[필자가 궁금한 것]]] 1....
-
앵간ㄴ히 하고 자야겠다
-
나는 200명도 힘들어 디지겠는데 300명은 우와..
-
궁금합니더
-
역시나 독서
-
반수생 수학 개념 교재 없이 강의만 듣는거 어케 생각함? 개념을 많이 까먹어서;;
-
썩쓸 씨발련아.
-
평가원만 있는거
-
분석하는데 1시간 넘게 걸렸는데 분서ㄱ하다가 머리터져서 내일 다시할거 같음....
-
처음에는 ㄹㅇ 짐승의 그것과 같았다 이제는 좀 나아진듯
-
하 0
국어만 어떻게 하면 될거 같은데
-
왤케 안 팔리나요? ㅇㅂ때문인가
-
김승리tim 2
지금 올오카 3월 14일 쯤 부터 시작해서 한주에 독서문학 같이 듣는 식으로 해서...
-
가난한 ㅈ고딩 10
최소한의 돈으로 먹을 수 잇는 젤 맛잇는거 추천해주세요 ㅜㅜ사실 근처에 편의점밖에 없어요
-
명언 추천좀 4
암거나 ㄱㄱ헛
-
"만약 여러분이 수학학원에 갔는데 로그함수가 뭔지도 알려주지 않고 일단 문제부터...
-
암산테스트 0
101 나오는 사람도 있는데 이거면 좀 낮은편 아닌가
-
하지말아주세요.짜피 반응 안하니까제 몸에서 반응하는 부위는 한 부위밖에 없음뇨
-
[속보] 윤 대통령 탄핵심판 선고 방청권 경쟁률 4,818.5:1 3
내일(4일) 윤석열 대통령 탄핵심판 선고에 참석할 일반 시민의 방청 경쟁률이...
-
기대된다
-
어디가 유망하죠? 입결도 비슷한데 선택기준이 뭔가요?
-
저능아 ㅇㅈ 8
.
-
애들이 거의 다 기출+ 심화학습지 풂 좀 잘하는 애들은 엔제풀던 애들도 꽤 있던데
-
선착순. 5
저메추 받음.
-
캬캬
-
ㄹㅇ 나랑 거기서 거기임...
-
묻지 않는다 할 거야 ㅅ발
-
이번 3모고 순서는 국,수,영, 국수영합, 한,탐,탐임
-
천원에 다섯곡인데 화면보니 서비스어쩌고 한곡 더 추가됐어 목 ㅈㄴ아프네 6곡을...
-
8,9,10? 11,12,13? 14? 몇번이 쉬사 난이도인가요? 3등급 맞으려면...
-
[칼럼] 반응하며 읽어보는 탄핵 인용 선고문
-
국어 수학 하라는 나쁜말 ㄴㄴㄴ
-
어떻게 놀아드리죠
-
지금 큐브중인데 0
수12 과목 구분 못 하는 사람이 왤케 많노
-
추천 부탁드립니다
와 딱봐도 어려워서 버렸는데
버리길잘했네
ㅠㅠㅠㅠㅠ 당신만을 기다렸는데 ㅠㅠㅠㅠㅠㅠ

어려워서 못풀었을듯
사실 삼각함수를 원래 잘 못 씀 ㅜㅜㅜㅜㅜ"문제가 평가원스럽지 않았다"라고 생각합니다
1번처럼 끼워 맞추려다 말았는데 맞는 풀이였네요 ㄷㄷ
공부 그거 얼마나 쉬었다고 벌써 원을 다 까먹었는지..
1번 루트로 가실 생각을 하셨다니... 대단하십니다 ㅎㅎ 사실 1번 상황을 보고 거기에 맞춰 문제를 제작하였습니다
제가 도형에 약해서 일부러 보조선의 모든 경우를 다 생각해 보고 들어가기 때문에 그랬던 것 같네요
이게 진짜 좋은, 중요한 자세인 것 같습니다
물론 틀려 가면서 데이터베이스에 누적되는 거라 ㅋㅋㅋ 올수 14번도 설맞이에서 당해 본 발상이 아니었더라면 높이를 구할 수 없지 않았을까 싶긴 합니다
한 번 당한 문제를 다음엔 안 당하는게 공부의 핵심이라고 생각해요
친구한테도 이 문제 줫는데 풀때까지 안 잔다는데 괜찮겟죠?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 풀어내실겁니다 아마...!
왼쪽 삼각형 볼 생각은 하지도 못했네요.. 덕코 감사합니다 ?
ㅎㅎ :)
EP길이랑 각 DEP가 45도임을 바로 구하는 방법도 있네요..!
Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•이라 할 수 있고, 원주각의 성질로 각 DAP=DEP, 각의 이등분선이니 각 DAP=PAE=•, 이때 각 A가 직각이니 2•=90° <=> 각 DEP=45°, 삼각형DEP는 직각이등변 삼각형이 되네요!
맞습니다! 해당 방법으로 해설에서 EP의 길이를 구한 것이나, 과정이 자명하여 굳이 따로 서술하진 않았습니다 ㅎㅎ.(페르마 아님) 결국 외접원의 반지름을 구하기 위해선, EP의 길이와 각ECP의 sin값을 알아야 sin 법칙을 사용할 수 있고, 문제에서 주어진 sin 값이 같다는 조건은 각ECP의 sin값을 알아내기 위해 사용되었습니다.
"Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•"
이 부분에 관하여 약간 첨언하자면,
ㅋㅋㅋㅋㅋ 저 부분을 고민을 했었던 것도 사실입니다....
다만 해설을 저렇게 작성하지 않은 이유가.. sin값이 같다고 했을 때 저 두 각이 a와 ㅠ-a 관계인지 같은 각인지 명확하게 보일 수 없어서 였습니다.
조건을 cos값으로 줬다면 논리적 비약 없이 해당 결론이 바로 나올 수 있지만... 그러지 말라는 문제의 의도 정도로 봐주시면 감사하겠습니다!

으악 맞네요 a와 ㅠ-a라면 이야기가 달라지겠네요..!! 제 풀이에 비약이 있었군요좋은 문제 공유해주셔서 감사합니다 :)