[자작문제 해설] 수1 삼각함수 문항
게시글 주소: https://orbi.kr/00071486499
아까 올린 이 문제에 대한 해설입니다.
1번 풀이는 조금 많이 발상적인 면이 강하고, 2번 풀이가 약간 정석적인 루트라고 볼 수 있을 것 같습니다.
관건은 sin값이 같다는 조건을 어떻게 해석하느냐 였는데, 아마 해당 조건의 해석 방향이 수1보단 중등 기하적인 성격이 강해 낯설어하셨던 것 같습니다.
다음에도 재미난 문제로 찾아뵙겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
Ebs는 되던데
-
관심못받으면 삭제하고 메인가면 삭제하고 이새끼들은 좋아요 한 7개쯤 받으면서?...
-
허접 늦기잇♡
-
텍스트 깨진 것 같긴 한데 뭔가 무섭네요...
-
심심해 2
버둥버둥
-
퇴근완료 5
오늘은 무서우니 집콕
-
ㅇ
-
근데 막상 부대로 복귀하면 이 ㅈ같은 감정이 없어짐 ㅋㅋ ㅆㅂ
-
사문 윤성훈 4
물리에서 사문으로 바꿨는데 30강 짜리 강의 매일 1개씩 듣기 vs 30강짜리...
-
국어 고정1인데 9
이럼 사문생윤 할때 좀 유리한가료? 사문은 수학적 사고력도 좀 요구한다고 하던데...
-
재수생이라 현역때 기출 3번 정도 봤었음 지금 너기출로 이미 1회독 한 상태임...
-
필의패하고 증원 다 폐지인가요
-
고양이가 귀엽다
-
수능공부랑 논술공부 다 한단 전제면 연논보단 고논이 더 쉬운가요 6
근데 논술해봤다는 동기들한테 물어보니 고논 문제도 그렇게까지 쉬운건 아니라고들 하길래...
-
누구들을까요
-
7시 기상 7시 ~ 7시 반 오르비 정독 7시 반 ~ 8시 빡갤 정독 8시 ~ 8시...
-
시대컨 0
평가원 기준 13, 20번 (4점 허리부분)이 간혹가다 오래걸리고 흔들리는데 시대...
-
차은우 페이커 0
대신 대성은 날 광고모델로 썼어야했는데 감다뒤노
-
진짜임요?
-
뒤통수치진 않겠지
-
과장 조금 보태서 "과학/기술 지문 때문에 " 국어 1등급 못받는 사람임. 중학교때...
-
온갖 내란성 질환들이 완치될 시간이다
-
무효되냐
-
치코쿠 치코쿠 15
어 시간아 흘러보세요 택시 타면 그만~
-
으하하하하 5
으하하하하하
-
학교가는중 3
잡담태그미안해요ㅜㅜㅜㅜ
-
뭔가 시험을 치면 집중이 안되고 흐리멍텅 해진다고 해야되나... 원래...
-
학교가면 친구도 있을거 아니야 이 기만쟁이들
-
오늘도 체육시간에 요가해야됨. 진지하게 조퇴 고민중
-
홀린듯이 맥주구경함 다행히 정신차림
-
아니 왜 존예 여르비는 14
금테고 나 같은 평범 여르비는 아직 은테인거임
-
시발 2
-
생윤이 파고들수록 은근 개념이 많다는데 반수생이라 시간상 탐구 두개를 새로 다...
-
여기 창문에서도 육안으로 여의도가 보이는데
-
정치적 상황과 전혀 관계 없음 어쩔 수 없이 늦잠 잔 거 때문임
-
얼버기 2
오늘도 독재를 가는구나
-
인프라 개박은 동네에 중도는 개좋음 갈 때마다 울 학교 나쁘지 않은거같기도하구
-
오리온 작년꺼 시즌 1 Day 8 3번임다 일단 저 그래프 X축이 값이 클수록...
-
안그래도존나무서운데 도망도안가;
-
오늘은 집에서 쉴게요 가고 싶었는데...
-
ㅇ..
-
어 2
36분이라니 지고쿠 지고쿠
-
D-223 0
영어단어 영단어장 day 2(80단어) +추가 표제어 암기 영어 수능특강 3강...
-
지각이야 지각~ 4
-
얼버기 0
부지런행
-
젭알
-
나만 강의가 한두개 뜨는거임? 교재 사야 강의가 다 뜨는건가요? 왜 강의가 전부...
와 딱봐도 어려워서 버렸는데
버리길잘했네
ㅠㅠㅠㅠㅠ 당신만을 기다렸는데 ㅠㅠㅠㅠㅠㅠ

어려워서 못풀었을듯
사실 삼각함수를 원래 잘 못 씀 ㅜㅜㅜㅜㅜ"문제가 평가원스럽지 않았다"라고 생각합니다
1번처럼 끼워 맞추려다 말았는데 맞는 풀이였네요 ㄷㄷ
공부 그거 얼마나 쉬었다고 벌써 원을 다 까먹었는지..
1번 루트로 가실 생각을 하셨다니... 대단하십니다 ㅎㅎ 사실 1번 상황을 보고 거기에 맞춰 문제를 제작하였습니다
제가 도형에 약해서 일부러 보조선의 모든 경우를 다 생각해 보고 들어가기 때문에 그랬던 것 같네요
이게 진짜 좋은, 중요한 자세인 것 같습니다
물론 틀려 가면서 데이터베이스에 누적되는 거라 ㅋㅋㅋ 올수 14번도 설맞이에서 당해 본 발상이 아니었더라면 높이를 구할 수 없지 않았을까 싶긴 합니다
한 번 당한 문제를 다음엔 안 당하는게 공부의 핵심이라고 생각해요
친구한테도 이 문제 줫는데 풀때까지 안 잔다는데 괜찮겟죠?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 풀어내실겁니다 아마...!
왼쪽 삼각형 볼 생각은 하지도 못했네요.. 덕코 감사합니다 ?
ㅎㅎ :)
EP길이랑 각 DEP가 45도임을 바로 구하는 방법도 있네요..!
Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•이라 할 수 있고, 원주각의 성질로 각 DAP=DEP, 각의 이등분선이니 각 DAP=PAE=•, 이때 각 A가 직각이니 2•=90° <=> 각 DEP=45°, 삼각형DEP는 직각이등변 삼각형이 되네요!
맞습니다! 해당 방법으로 해설에서 EP의 길이를 구한 것이나, 과정이 자명하여 굳이 따로 서술하진 않았습니다 ㅎㅎ.(페르마 아님) 결국 외접원의 반지름을 구하기 위해선, EP의 길이와 각ECP의 sin값을 알아야 sin 법칙을 사용할 수 있고, 문제에서 주어진 sin 값이 같다는 조건은 각ECP의 sin값을 알아내기 위해 사용되었습니다.
"Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•"
이 부분에 관하여 약간 첨언하자면,
ㅋㅋㅋㅋㅋ 저 부분을 고민을 했었던 것도 사실입니다....
다만 해설을 저렇게 작성하지 않은 이유가.. sin값이 같다고 했을 때 저 두 각이 a와 ㅠ-a 관계인지 같은 각인지 명확하게 보일 수 없어서 였습니다.
조건을 cos값으로 줬다면 논리적 비약 없이 해당 결론이 바로 나올 수 있지만... 그러지 말라는 문제의 의도 정도로 봐주시면 감사하겠습니다!

으악 맞네요 a와 ㅠ-a라면 이야기가 달라지겠네요..!! 제 풀이에 비약이 있었군요좋은 문제 공유해주셔서 감사합니다 :)