[자작문제 해설] 수1 삼각함수 문항
게시글 주소: https://orbi.kr/00071486499
아까 올린 이 문제에 대한 해설입니다.
1번 풀이는 조금 많이 발상적인 면이 강하고, 2번 풀이가 약간 정석적인 루트라고 볼 수 있을 것 같습니다.
관건은 sin값이 같다는 조건을 어떻게 해석하느냐 였는데, 아마 해당 조건의 해석 방향이 수1보단 중등 기하적인 성격이 강해 낯설어하셨던 것 같습니다.
다음에도 재미난 문제로 찾아뵙겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
07현역정시 설대 심심한 캬
-
언매 130/94/2 미적 146/100/1 영어 1 화1 백분위 97 지1 백분위...
-
설대 말고는 인설공 거의 다 미적기하 가산도 없는 걸 방금 전에 알게 됬는데,...
-
제가 9월에 자퇴해서 2차 검고만 볼 수 있어서 학원, 학교 응시 다...
-
과팅이 뭐에요? 3
과학 팅커벨?
-
얼버기 5
사실 구라고 학원알바가는중 오늘 하루 힘내봅시다
-
전교과기준 내신 3.8(2학년 2학기까지)이고 생기부는 평범한 편입니다. 마지노선...
-
사문 언제 떡락함?
-
응가 1. 명사 어린아이의 말로, 똥이나 똥을 누는 일을 이르는 말. 2. 감탄사 어린아이에게 똥을 누라는 뜻으로 내는 소리. 0
응가 1. 명사 어린아이의 말로, 똥이나 똥을 누는 일을 이르는 말. 2. 감탄사...
-
진지하게 원하는 교재들 뭐있나요? 인강교재 ㄴㄴ 빠르게 개념쎈 + 베이직쎈 + 쎈...
-
우우웅 4
30분 사냥하고 헬스장갈래
-
26 6 9 수능은 어떨까 2406만 해도 상상도 못한 쉬운 수학
-
현우진 확통 개정 시발점 완강했는데 좀 부족한거 같아서 실전개념 들을려그러는데 추천좀 해주세요
-
작수 12242이긴 한데 언매97 확통89 (둘다 턱걸이) 4합8 맞추려고 본거라...
-
하지만 등급컷표를 보고 물이라 해서 욺
-
‘그림과 같이‘는 왜곡 없이 그래프 준다는 얘기 아니었음? 10
올해 수특 삼각함수 문제인데 실제 그래프보다 좀 많이 왜곡되어있는데 ‘그림과...
-
국어 도식화 1
쉬운 지문은 그냥 잘 읽히는데 어려운 지문은 문장을 납득하는데 주의를 기울이다보니까...
-
한 달에 4번 쉬는 재수생임 보통 쉴때 운동,독서,산책해요 근데 내가 서울 가는걸...
-
베누스 컷 6
으흐흐
-
헉!!!
-
안그러면 당신 이름으로 일베에 가입하겠습니다.
-
ㅇㄱ ㅈㅉㅇㅇ? 6
엄…. 서한중 하자
-
사람 기분 ㅈ박게하고 지랄이네
-
너만을 사랑하고 있다는 걸들어줄 사람도 없이 빗속으로 흩어지네너의 이름을...
-
왤케 하나하나 다 좆같냐 갑자기
-
독재학원에서 한달정도 공부중이고 그전까지도 집앞 독서실에서 공부를 해왔었어요 근데...
-
명제 다보탑은 경주에 있다 명제 다보탑이 경주에 있을 수도 있다 두 명제는...
-
진짜 잘 노네 재밌겠다
-
이상형 발견
-
보통 수능준비하시는 1년동안 수학엔제 얼마나 푸시는거같나요??? 4
얼마정도 푸시는거같나요???
-
유진초이 2
멋있다
-
문제를 정확하게 풀면서 피지컬 늘리기 6월 모평 이후에 문제 양치기 하기 어떻게 생각함?
-
높은 대학에 가고싶다는 열망이 너무 커서 연애새포를 눌러버림
-
가끔 지피티가 지브리로 변환을 못 하겠다고 하는 경우가 있는데(feat. 도긩이) 2
그때 지피티한테 "그럼 이 사진을 지브리 느낌/스타일로 만들려면 어떤 프롬프트가...
-
N수땜에 메가패스 사려고 며칠 뛰려하는데 알바몬에서 신청하면 될까요? 많이...
-
뭐가 다른거임? 쎈 대수 미적1 사도 됨?
-
좋은 선택일까요? 재슈생이어서 시간은 많습니다.
-
진짜 존예노
-
판서 어떤가요 2
더 연습해야..
-
작수 미적 3틀 84점이었던 반수생입니다. 제가 그래도 공통은 나름 자신있는데,...
-
제가 6모때 21221 9모때 11211를 받고 작수에 미끄러져서 31222를...
-
가운 입고 방 들어갔는데 교수님 들어오신다고 할 수도 있음
-
도전VS포기 다른과고 어디에 출몰하는지 암
-
넹
-
ㅇㅈ 5
올해 첫 전국대회 동메달 따고 서울가는중
-
내일은 시험이에요 15
.. 밤 새야 해요
-
이따 알바 가야지 아마 내일은 알바 안갈듯
-
빤쮸 샀는데 5
되게 만족스럽네
와 딱봐도 어려워서 버렸는데
버리길잘했네
ㅠㅠㅠㅠㅠ 당신만을 기다렸는데 ㅠㅠㅠㅠㅠㅠ

어려워서 못풀었을듯
사실 삼각함수를 원래 잘 못 씀 ㅜㅜㅜㅜㅜ"문제가 평가원스럽지 않았다"라고 생각합니다
1번처럼 끼워 맞추려다 말았는데 맞는 풀이였네요 ㄷㄷ
공부 그거 얼마나 쉬었다고 벌써 원을 다 까먹었는지..
1번 루트로 가실 생각을 하셨다니... 대단하십니다 ㅎㅎ 사실 1번 상황을 보고 거기에 맞춰 문제를 제작하였습니다
제가 도형에 약해서 일부러 보조선의 모든 경우를 다 생각해 보고 들어가기 때문에 그랬던 것 같네요
이게 진짜 좋은, 중요한 자세인 것 같습니다
물론 틀려 가면서 데이터베이스에 누적되는 거라 ㅋㅋㅋ 올수 14번도 설맞이에서 당해 본 발상이 아니었더라면 높이를 구할 수 없지 않았을까 싶긴 합니다
한 번 당한 문제를 다음엔 안 당하는게 공부의 핵심이라고 생각해요
친구한테도 이 문제 줫는데 풀때까지 안 잔다는데 괜찮겟죠?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 풀어내실겁니다 아마...!
왼쪽 삼각형 볼 생각은 하지도 못했네요.. 덕코 감사합니다 ?
ㅎㅎ :)
EP길이랑 각 DEP가 45도임을 바로 구하는 방법도 있네요..!
Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•이라 할 수 있고, 원주각의 성질로 각 DAP=DEP, 각의 이등분선이니 각 DAP=PAE=•, 이때 각 A가 직각이니 2•=90° <=> 각 DEP=45°, 삼각형DEP는 직각이등변 삼각형이 되네요!
맞습니다! 해당 방법으로 해설에서 EP의 길이를 구한 것이나, 과정이 자명하여 굳이 따로 서술하진 않았습니다 ㅎㅎ.(페르마 아님) 결국 외접원의 반지름을 구하기 위해선, EP의 길이와 각ECP의 sin값을 알아야 sin 법칙을 사용할 수 있고, 문제에서 주어진 sin 값이 같다는 조건은 각ECP의 sin값을 알아내기 위해 사용되었습니다.
"Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•"
이 부분에 관하여 약간 첨언하자면,
ㅋㅋㅋㅋㅋ 저 부분을 고민을 했었던 것도 사실입니다....
다만 해설을 저렇게 작성하지 않은 이유가.. sin값이 같다고 했을 때 저 두 각이 a와 ㅠ-a 관계인지 같은 각인지 명확하게 보일 수 없어서 였습니다.
조건을 cos값으로 줬다면 논리적 비약 없이 해당 결론이 바로 나올 수 있지만... 그러지 말라는 문제의 의도 정도로 봐주시면 감사하겠습니다!

으악 맞네요 a와 ㅠ-a라면 이야기가 달라지겠네요..!! 제 풀이에 비약이 있었군요좋은 문제 공유해주셔서 감사합니다 :)