[자작문제] 수1 삼각함수 문항
게시글 주소: https://orbi.kr/00071483869
객관식이라 답에 뭔갈 걸긴 좀 그렇고
출제자의 의도대로 풀어서 풀이를 올려주시는 분께는 5000덕을 드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
평가원이 정의하는 킬러는 사교육의 스킬이나 방법론을 0
반복해서 쉽게 풀 수 있는 문항들임 킬러는 '난이도'의 문제가 아니라고 못박았음
-
독재 다니는데 여기서..? 여기선 달에 한 번씩 사설봐서 너무 익숙해질거...
-
사랑해 gpt쨩
-
학교에 미리 연락 안하고 그냥 바로 행정실 가셨나요.
-
3수이상 분들 6모 학원이랑 모교 중 어디가 나아요 7
우리 학원에서 응시된대서 학원은 집에서 5분 거리긴함 근데 현장감 때문에...
-
속보) 화성 태행산 정상에 폐오일 뿌린 60대 자수…“텐트치는 캠핑족에 화나서” 3
경기 화성시 비봉면 태행산 정상 부근에 폐오일을 뿌린 60대가 경찰에...
-
여기 왜 오처넌이냐 씨빨
-
젭알
-
진짜 충격적이다
-
쌤도 벌써 50대가 되셨구나..
-
죽는다죽어
-
걍 미분해보니까 (a.f(a)) 접선꼴 나오길래 차함수 처리해서 풀었는데 이래도...
-
이번 3모 수학 6
10번 틀리고 22번 맞았는데 은근 이런사람 많을거같은데ㅜ22번은 n제에서 많이...
-
맛점하세요 2
네엡
-
이거 어디가 잘못된 거임? 다시 해서 정석대로 풀긴 풂
-
현역 고3입니다!! 친구들이 강t에서 김승리로 넘어가라고해서 설득당했는데.,....
-
푸느라 개고생했으니 개추좀
-
준?역덕이라 중국 일본 관직, 시대, 후궁 품계까지 다 외우고 있는데 사건이랑...
-
앵그리버드임 반박안받음
-
밖에 돌아다니는 커플들 아니 주변 친구들만 봐도 그저그런 얼굴이나 솔직히 조금...
-
1사탐1과탐이면 경희대 한의예과 인문,자연 둘다 지원할수있는건가요?
-
하늘색 아기 드래곤? 키우는 게임이었음 밥 주고 이불 덮어서 재우고...
-
늦잠자서 학원 접수 올실패함 ㅜ
-
남동생한테 조언 맞게 해준 거 맞나요? 이새끼 지 할말만 하는 거 약간 킹받긴...
-
작년 강k 수학 4점짜리 문제들이 시중 n제보다 퀄 좋나요? 심심할때마다 n제 대신 풀어볼라는데
-
3모 영어 쉽네 3
으어,,, 아 아아 이게 이거네ㅡ하다 보면 거의 풀리네
-
시중 스킬 모두 마스터한 의대생이 집필한 생명과학 1 책 0
경북대학교 의예과 23학번 지니입니다. 아래는 제 간단한 소개입니다. [저자 소개]...
-
1번틀렸다고씨발
-
실수 전체의 집합에서 실수 전체의 집합에 대응이라는 조건이 모든 정의역 집합이 모든...
-
미적 대신 언매+확통+과탐으로 약대 가능한가요
-
강의 안에서 자기 28살이라길래 진짜 28살인줄알았는데….
-
모교 다시는 안 갈줄 알았는데..
-
이름 부르나요..? 아는 애들 만날 거 같아서 불안함..
-
아직 만우절 아니라고 빨간고양이
-
한 판 붙 자!
-
현역이고 3모 88나왔습니다 원래 드릴 풀려했는데 너무 어렵다는 소리를 들어서...
-
의견부탁드립니다!
-
What's up, guys? This is Ryan from Centum...
-
없나요
-
흐느적흐느적 13
흐물흐물
-
월요일 0
학교 싫다ㅡㅡ......햄버거 먹고싶노
-
심찬우 구독권 구입했어요. 문화상품권 신청 여기서 하는건가요? 학부모인데 도통...
-
6모신청 질문 1
개인사정때문에 5월정도에 학원들어갈거같은데 지금학원에 신청안하면 6월에 학원들어가있어도 못봄?
-
이제 50일수학 수꼭필 다 들었는데 듣는 동안 너무 저랑 안맞는 느낌이어서 다른...
-
오...
-
응 한솥에서 5000원짜리 사먹어서 맞추면 돼~~~
-
30분 42점 (12 14 16) 6모땐 50맞기를
-
정권교체 57.1%로 5주째 우세…민주 47.3%·국힘 36.1% [리얼미터] 19
(서울=뉴스1) 구진욱 기자 = 윤석열 대통령에 대한 탄핵 심판 선고기일이 좀처럼...
-
대치러셀6모 1
강남러셀은 온라인신청해도 따로 현장 방문 해야 하던데 대치러셀은 방문 안해도 되는건가요?
펜 꺼내기 귀차는데, 눈으로 안 풀려 ㅜㅜ
막 그닥 복잡하진 않아요..!
13번이라기엔 너무 어려운데요ㅠㅠ 이상한 곳만 보고있는 건가
앗 좀 어려운가요..ㅠ 발상적인 부분이 조금 있긴 합니다
여기까지만 보고 사인 같다 해석을 못하겠네요
내대각의 성질을 이용해서 각을 열심히 돌리다 보면 재밌는 조건이 찾아집니다! 풀이는 다른 게시글에 올려두겠습니다 참고해보세용
간간히 봐서 풀긴 풀엇는데 개 지랄로 품 ㅜㅜ
ㅋㅋㅋㅋㅋㅎ 어떻게 푸셨나요
CE=CT인 선분 BC위에 점을 T, 원의 중심을 O, PO와 AE의 교점을 R이라 하면,
O,R,A,D는 공원점이고, 조건에 의해 DP//AF이다. (AD와 PF가 평행하지 않으므로)
각 ORE = 각 EDA (원주각) = 각 PDA - ㅠ/2 = 각 DPF - ㅠ/2 = 각 APC.
즉, CP=CR이고 ET//PR⊥DE이므로, ET는 접선이다.
접현각에 의해 각 TEP는 45도이다.
즉, 삼각형 CEP를 보면, CP를 1:2로 내분하는 점 T에 대해.
각 TEP=45도이고, CE=CT이고, PE=8sqrt(2)이다. (Sin법칙.)
따라서 삼각형 CEP가 결정되엇다. (코사인 3번인가 염병하면 길이 다 나온다.)
원주각 아니고 내대각이네 저기
이게 이렇게도 풀리는군요..ㄷㄷ T 잡을 생각을 어떻게 하셨는지 궁금한데 혹시 여쭤봐도 될까요?
각 열심히 돌리다가 보엿습니다 ㅋㅋ.. 거의 직관적으로 본 거 같아서 저 점을 잡을 생각을 어케 햇는지를 잘 모르겠네요.
원래 풀이가 궁금해요
ㅋㅋㅋㅋㅋㅎ 넵 게시글로 올리겠습니다
그림도 대강 그려올게요
이거임뇨, 너무 ㅈ같이 풀어서 보여주기 부끄러울 정도네요 ㅇㅅㅇ..