Orbi지형T_[점수를높이는5M.Column] Ch2.등비수열,수열의합'지형도를그리다'
게시글 주소: https://orbi.kr/00071447980
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
Orbi_Column_김지형T_수1(수열의합)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH2 Geometric sequence
CH3 Sum of a sequence
오늘 소개해드릴 챕터는 등비수열과 수열의 합 파트입니다. 첨부파일에는 등차수열/등비수열과 수열의 합 개념 부분만 올려두었어요. 이 자료는 현강에서 설명한 내용을 정리한 것으로, 필요하신 경우 다운로드하여 읽어보시면 큰 도움이 될 거라 생각합니다.
등비수열과 수열의 합은 등차수열 파트와 달리, 기출문항 중 중요한 문제는 많지 않아서 개념 위주로 정리하였습니다.
그럼 시작해볼게요!
Chapter 2: 수1 등비수열
(Geometric sequence)
등비수열은 무엇보다 공비를 직관적으로 파악하는 능력이 가장 중요합니다. 등비수열의 핵심은 각 항이 일정한 비율(공비)로 이전 항과 연결되어 있다는 점인데요. 공비를 빠르게 이해하고 활용할 수 있다면 문제를 푸는 속도가 훨씬 빨라질 뿐만 아니라, 다양한 응용 문제에서도 효과적으로 접근할 수 있습니다.
이와 같이 다양한 등비수열의 공비를 빠르게 파악하는 능력은 문제를 해결하는 데 있어 매우 중요한 역할을 합니다. 공비는 등비수열의 구조를 이해하는 열쇠이자, 다음 단계로 나아가는 출발점이 되기 때문인데요. 공비를 빠르게 파악하면 수열의 일반항을 구하거나, 합공식을 적용하는 데 훨씬 수월해집니다.
특히, 미적분에서 자주 등장하는 등비급수를 계산할 때도 공비를 정확히 이해하고 활용하는 것이 핵심입니다. 예를 들어, 등비급수의 합을 구할 때 사용하는 공식은 모두 공비의 성질에서 출발합니다.
공비의 크기(절대값)가 1보다 작을 때, 등비급수의 합은 극한값으로 수렴하게 되는데, 이는 무한급수 문제를 푸는 데 매우 중요한 개념입니다. 이때 공비를 빠르게 파악하고 공식에 대입하는 과정이 자연스러워진다면, 복잡한 계산도 한결 쉽게 해결할 수 있죠.
이번에는 등비수열의 합 증명 과정에 대해 살펴보겠습니다. 등비수열의 합 공식을 정확히 이해하고 유도 과정을 기억하는 것은 문제 풀이뿐만 아니라 수학적 사고력을 키우는 데도 큰 도움이 됩니다. 특히 공식을 단순히 암기하는 것에 그치지 않고, 유도 과정을 이해하면 다양한 문제 상황에서도 유연하게 응용할 수 있게 됩니다.
Chapter 3: 수1 수열의 합
(Sum of a sequence)
**(5)**번 문제는 모의고사 기출문제를 풀 때 종종 등장하는 형태로, 한 번 익혀두면 매우 유용하게 활용할 수 있는 유형입니다. 특히, 이 문제는 **(1)**번과 **(2)**번의 결과를 더해 정리한 것이기 때문에 구조적으로 간단하고 이해하기 쉬운 편입니다.
등차수열과 등비수열의 합 공식은 다양한 문제를 빠르고 정확하게 해결하기 위해 꼭 알아야 하는 핵심 도구입니다. 이 공식들을 제대로 활용하면, 복잡해 보이는 문제도 단순한 계산으로 빠르게 정리할 수 있어요.
오늘 다룬 내용은 비교적 어렵지 않지만, 개념을 몰랐던 학생들에게는 매우 유익한 정보가 될 거예요. 무엇보다 중요한 건, 공식을 단순히 외우는 것보다 그 원리를 이해하는 것입니다. 개념을 제대로 이해하면 다양한 문제에서 응용할 수 있어 학습 효과가 훨씬 커질 거예요.
다음 Column에서는 수학적 귀납법에 대해 다룰 예정입니다. 특히, 작년 6월/9월 모의평가와 수능 22번에서 출제된 문항들을 깔끔히 분석하며, 최근 귀납법 문제가 어떤 흐름으로 출제되고 있는지 한눈에 정리해드릴게요. 이를 통해 귀납법 문제에 대한 이해를 쉽게 높이고, 실전에서 바로 적용할 수 있도록 도와드리겠습니다.
혹시 오늘 다룬 내용을 더 자세히 배우고 싶다면, Orbi 인강에서 확인해보세요. 제가 직접 준비한 강의에서는 개념부터 문제풀이까지 하나하나 차근차근 설명해드리니, 혼자 공부하며 놓쳤던 부분도 확실히 채울 수 있을 거예요. 수학이 점점 자신있어지는 경험을 할 수 있도록 함께 만들어가는 강의가 되겠습니다.
오늘 하루도 화이팅하시고, 더 나은 내일을 위해 계속 나아가 봅시다!
Orbi 강의에서 여러분을 기다릴게요!
유익했다면 좋아요! 팔로우! 부탁드립니다!!!
그리고 수학 질문 마구마구 댓글 달아주시거나 쪽지주시면하나하나 상세하게 답장해드리겠습니다아아아
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이해원s1 2
작년보다 쪼메 어려워진거 같은데 내가 못해진건가
-
나나 다른 사람이나 뭐 백날 말을 해도 똑같은 소리만 주구장창 설명을 해줘도 주구장창 그냥 포기함ㅇ
-
칼럼 파티다ㅏ 0
-
오 신기하네요
-
하아..
-
(질문) 수학 사설이 어려우면 어떤 걸 보면 좋을까요? 6
질문할 시간에 한 문제라도 더 푸는게 정배겠지만... 사고력 점검이 필요한 것...
-
수학 모의고사를 푸는 학생들은 막혔을 때 대처하는 법을 기준으로 크게 두 부류로...
-
아니 또 무슨 ai하고 대화하려면 공부를 해야된다 이런말 할거같은데 그거는 애초에...
-
안녕하세요, 수능 국어를 가르치는 쑥과마늘입니다. 오늘은 2021학년도 9월...
-
4회차 말도 안되는 난이돈것같은데 제가 못하는건가요 ..
-
[공부글] 3년 입시동안 본인의 수능 시험지 운용 방법 정리 13
소개 -23,24 정시 수도권 약학과 합격 -25수능 건수의 안정, 지방치 적정,...
-
맛있겠노
-
수1 수2 미적 하루에 3개 하루치씩 다 풀만함?
-
정치적, 제도적 이슈와 관련된 메타가 있을때마다 추가됨
-
9모끝나고랑 비겨하면 집중력이 빨리 떨어지는거같은데 너무 많이남아서 그런가….
-
수학 고민시간 1
수분감 하는 중인데요 한 문제 풀 때 고민 얼마나 하시나요? 이제 처음 푸는 거에요
-
산책하다 3
준네 멀리왔음 여기 어디여;
-
흠 3
흠
-
정말이지 무시무시한 우연의 일치가 아닐수없습니다..
-
아따 날씨좋다 2
ㄷㄷ 이쁜이 발견
-
님들은 가족 아닌 여자애기 옷 갈아 입히는 거 가능함? 7
그럴 일은 보통 없겠지만 가족 아니고 부모님 지인 분의 애기 같이 걍 남인 3~4살...
-
운동하던 친구가 갑자기 대학가겠다며 공부를 하려고 하는데 전부 3등급이면 어디...
-
국어 유기 4
3모 국어 원점수 84인데요 수학이 4가 떠서 4월 한달동안 수학만 하려고 하는데...
-
개념 다 돌렸고 문제가 적은 과목이라길래 학평, 평가원 다 뽑아서 풀려는데 법과...
-
미친짓?
-
고속기준 시립대전전컴이 찐초고 중앙대 공대는 노랑인데 인문이면 고대 가정교육과 연초...
-
프리뷰 테스트 보고 모의고사 형태 시험지에다가 필기할 거 필기하는 거임? 큐이디 본...
-
뭐 때문인거지 트럼프로인한 전세계적 현상인가
-
오늘 공부한다리 2
삘 옴
-
어제 현금 많이 달러화 해뒀었는데.. 달콤하다
-
컴공보다는 나으려나..
-
필요하긴한데 하는게나으려나
-
수특독서 심리철학의 물리주의적 이론들에서 기능주의? 0
심리철학의 물리주의적 이론들중 기능주의를 쉽게 설명해주실수 있는 분 계실까요?...
-
가능할까요 4
학교와서 1시간 40분동안 오르비만 했는데 지금부터 공부하면 서울대 가능할까요
-
차이점은,,, 진짜 금을 연성해낸다는 것..
-
나
-
씨팔........................
-
어느정도 유베인 학생이랑 노베에 가까운 학생을 동시에, 아무 상처 안 주고...
-
롤하고 학교에서 수업듣고 정시 공부 언제 하실거에여
-
할거 추천 좀 25
롤 제외
-
돌려서 거절하는 상황이라던가 그런거...
-
이번학기에 군대가려고 휴학중인데 계속 떨어져서 9월에 공군 가게생김… 한 9달을...
-
평가원 기출에 기반한 진짜 농어촌(자연 친화)
-
맨날 3 4시간 자면 깨니까 피곤해 죽겠음 누가 나좀 한 10시간씩 자게 해줘
-
난 오만하다 9
그러니 오만덕을 내놔
-
체감상 한 수요일 목요일쯤인데
-
정족의 발전 인정좀
-
키스타트 끝나고 3회독 해서 다음 커리는 키스로직이 나을까요??

이번글도 도움이 많이됐습니당ㅎㅎ재수했을때 수학 성적 진짜 많이 올려주신 고마우신 지형쌤.. 역시 인강 진출 하실 줄 알았습니다ㅠㅠ
헐 오랜만이야ㅠㅠㅠ 고마워!!! 갠톡좀주세요ㅎㅎㅎ